
history of man’s best friend.
The findings should aid in tracking down

disease genes, says Ostrander. She can now
expand the search for a gene in one breed to
other breeds shown to be related by their mi-
crosatellite compositions. Having a larger
sample will make it easier to detect the mu-
tation at fault. “This is what I see as the
most powerful use of the data,” she notes.

The dog offers other advantages over hu-
mans for gene hunts, says Sutter. To find the
mutated genes underlying complex diseases
such as cancer, geneticists look for base
changes along the DNA where the implicat-

ed gene seems to be. Initial analyses suggest
that geneticists will need to gather about
400,000 base differences—called single nu-
cleotide polymorphisms—in the human
genome to begin to pin down a problematic
gene implicated in a disease. 

But as Sutter reported at the Cold Spring
Harbor meeting, such gene tracking should
be much easier in dogs. By incorporating ge-
nomic information from 20 dogs from each
of five breeds and the previously published
poodle sequence (Science, 26 September
2003, p. 1898), he calculated that the job can
be accomplished with just 30,000 SNPs. 

At the same meeting, Lindblad-Toh de-
scribed her progress sequencing the genome
of a boxer named Tasha, chosen because the
breed has very little genetic variation. Work-
ing with Ostrander and more than two dozen
collaborators, Lindblad-Toh has sequenced
enough DNA to cover the genome more than
seven times over and expects that the consor-
tium will put these data together into a high-
quality draft. Once that goes public, which
should occur in the next few weeks, finding
disease genes in dogs will be even easier.

Dog breeders should be proud.
–ELIZABETH PENNISI
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N E W S O F T H E W E E K

The theorem that Ben Green and Terence
Tao set out to prove would have been im-
pressive enough. Instead, the two mathe-
maticians wound up with a stunning break-
through in the theory of prime numbers. At
least that’s the preliminary assessment of ex-
perts who are looking at their complicated
50-page proof.

Green, who is currently at the Pacific In-
stitute for the Mathematical Sciences in Van-
couver, British Columbia, and Tao of the
University of California (UC), Los Angeles,
began working 2 years ago on the problem
of arithmetic progressions of primes: se-
quences of primes (numbers divisible only
by themselves and 1) that differ by a con-
stant amount. One such sequence is 13, 43,
73, and 103, which differ by 30. 

In 1939, Dutch mathematician Johannes
van der Corput proved that there are an infi-
nite number of arithmetic progressions of
primes with three terms, such as 3, 5, 7 or
31, 37, 43. Green and Tao hoped to prove
the same result for four-term progressions.
The theorem they got, though, proved the re-
sult for prime progressions of all lengths.

“It’s a very, very spectacular achieve-
ment,” says Green’s former adviser, Timothy
Gowers of the University of Cambridge,
who received the 1998 Fields Medal, the
mathematics equivalent of the Nobel Prize,
for work on related problems. Ronald Gra-
ham, a combinatorialist at UC San Diego,
agrees. “It’s just amazing,” he says. “It’s such
a big jump from what came before.”

Green and Tao started with a 1975 theo-
rem by Endre Szemerédi of the Hungarian
Academy of Sciences. Szemerédi proved
that arithmetic progressions of all lengths
crop up in any positive fraction of the 
integers—basically, any subset of integers
whose ratio to the whole set doesn’t dwindle
away to zero as the numbers get larger and
larger. The primes don’t qualify, because
they thin out too rapidly with increasing

size. So Green and Tao set out to show that
Szemerédi’s theorem still holds when the in-
tegers are replaced with a smaller set of
numbers with special properties, and then to
prove that the primes constitute a positive
fraction of that set.

To build their set, they applied a branch
of mathematics known as ergodic theory
(loosely speaking, a theory of mixing or
averaging) to mathematical objects called
pseudorandom numbers. Pseudorandom

numbers are not truly random, because
they are generated by rules, but they be-
have as random numbers do for certain
mathematical purposes. Using these tools,
Green and Tao constructed a pseudo-
random set of primes and “almost primes,”
numbers with relatively few prime factors
compared to their size.

The last step, establishing the primes as a
positive fraction of their pseudorandom set,
proved elusive. Then Andrew Granville, a

number theorist at the University of Mon-
treal, pointed Green to some results by Dan
Goldston of San Jose State University in
California and Cem Yildirim of Boğaziçi
University in Istanbul, Turkey. 

Goldston and Yildirim had developed
techniques for studying the size of gaps be-
tween primes, work that culminated last year
in a dramatic breakthrough in the subject—
or so they thought. Closer inspection, by
Granville among others, undercut their main

result (Science, 4 April
2003, p. 32; 16 May 2003,
p. 1066), although Gold-
ston and Yildirim have
since salvaged a less far-
ranging finding. But some
of the mathematical ma-
chinery that these two had
set up proved to be tailor-
made for Green and Tao’s
research. “They had actu-
ally proven exactly what
we needed,” Tao says.

The paper, which has
been submitted to the An-
nals of Mathematics, is
many months from accept-
ance. “The problem with a
quick assessment of it is
that it straddles two areas,”
Granville says. “All of the
number theorists who’ve
looked at it feel that the

number-theory half is pretty simple and the
ergodic theory is daunting, and the ergodic
theorists who’ve looked at it have thought
that the ergodic theory is pretty simple and
the number theory is daunting.”

Even if a mistake does show up,
Granville says, “they’ve certainly succeeded
in bringing in new ideas of real import into
the subject.” And if the proof holds up?
“This could be a turning point for analytic
number theory,” he says. –BARRY CIPRA

Proof Promises Progress in Prime Progressions
N U M B E R  T H E O RY

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 
89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 
173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 
257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 
349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 
439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 
541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 
631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 
733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 
829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 
941 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 
1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 
1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 
1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 
1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 
1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 
1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 
1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 
1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 
1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 
1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 
1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 
2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 

Prime suspect. Arithmetic progressions such as this 10-prime 

sequence are infinitely abundant, if a new proof holds up.




