history of man's best friend.
The findings should aid in tracking down disease genes, says Ostrander. She can now expand the search for a gene in one breed to other breeds shown to be related by their microsatellite compositions. Having a larger sample will make it easier to detect the mutation at fault. "This is what I see as the most powerful use of the data," she notes.

The dog offers other advantages over humans for gene hunts, says Sutter. To find the mutated genes underlying complex diseases such as cancer, geneticists look for base changes along the DNA where the implicat-
ed gene seems to be. Initial analyses suggest that geneticists will need to gather about 400,000 base differences-called single nucleotide polymorphisms-in the human genome to begin to pin down a problematic gene implicated in a disease.

But as Sutter reported at the Cold Spring Harbor meeting, such gene tracking should be much easier in dogs. By incorporating genomic information from 20 dogs from each of five breeds and the previously published poodle sequence (Science, 26 September 2003, p. 1898), he calculated that the job can be accomplished with just 30,000 SNPs.

At the same meeting, Lindblad-Toh described her progress sequencing the genome of a boxer named Tasha, chosen because the breed has very little genetic variation. Working with Ostrander and more than two dozen collaborators, Lindblad-Toh has sequenced enough DNA to cover the genome more than seven times over and expects that the consortium will put these data together into a highquality draft. Once that goes public, which should occur in the next few weeks, finding disease genes in dogs will be even easier.

Dog breeders should be proud.
-Elizabeth Pennisi

NUMBER THEORY

Proof Promises Progress in Prime Progressions

The theorem that Ben Green and Terence Tao set out to prove would have been impressive enough. Instead, the two mathematicians wound up with a stunning breakthrough in the theory of prime numbers. At least that's the preliminary assessment of experts who are looking at their complicated 50-page proof.

Green, who is currently at the Pacific Institute for the Mathematical Sciences in Vancouver, British Columbia, and Tao of the University of California (UC), Los Angeles, began working 2 years ago on the problem of arithmetic progressions of primes: sequences of primes (numbers divisible only by themselves and 1) that differ by a constant amount. One such sequence is 13,43 , 73 , and 103 , which differ by 30 .

In 1939, Dutch mathematician Johannes van der Corput proved that there are an infinite number of arithmetic progressions of primes with three terms, such as $3,5,7$ or 31, 37, 43. Green and Tao hoped to prove the same result for four-term progressions. The theorem they got, though, proved the result for prime progressions of all lengths.
"It's a very, very spectacular achievement," says Green's former adviser, Timothy Gowers of the University of Cambridge, who received the 1998 Fields Medal, the mathematics equivalent of the Nobel Prize, for work on related problems. Ronald Graham, a combinatorialist at UC San Diego, agrees. "It's just amazing," he says. "It's such a big jump from what came before."

Green and Tao started with a 1975 theorem by Endre Szemeredi of the Hungarian Academy of Sciences. Szemerédi proved that arithmetic progressions of all lengths crop up in any positive fraction of the integers-basically, any subset of integers whose ratio to the whole set doesn't dwindle away to zero as the numbers get larger and larger. The primes don't qualify, because they thin out too rapidly with increasing
size. So Green and Tao set out to show that Szemerédi's theorem still holds when the integers are replaced with a smaller set of numbers with special properties, and then to prove that the primes constitute a positive fraction of that set.

To build their set, they applied a branch of mathematics known as ergodic theory (loosely speaking, a theory of mixing or averaging) to mathematical objects called pseudorandom numbers. Pseudorandom
number theorist at the University of Montreal, pointed Green to some results by Dan Goldston of San Jose State University in California and Cem Yildirim of Boğaziçi University in Istanbul, Turkey.

Goldston and Yildirim had developed techniques for studying the size of gaps between primes, work that culminated last year in a dramatic breakthrough in the subjector so they thought. Closer inspection, by Granville among others, undercut their main result (Science, 4 April 2003, p. 32; 16 May 2003,

235711131719232931374143475359616771737983 8997101103107109113127131137139149151157163167 173179181191193197199211223227229233239241251 257263269271277281283293307311313317331337347 349353359367373379383389397401409419421431433 439443449457461463467479487491499503509521523 541547557563569571577587593599601607613617619 631641643647653659661673677683691701709719727 733739743751757761769773787797809811821823827 829839853857859863877881883887907911919929937 94194795396797197798399199710091013101910211031 103310391049105110611063106910871091109310971103 110911171123112911511153116311711181118711931201 121312171223122912311237124912591277127912831289 129112971301130313071319132113271361136713731381 139914091423142714291433143914471451145314591471 148114831487148914931499151115231531154315491553 155915671571157915831597160116071609161316191621 162716371657166316671669169316971699170917211723 173317411747175317591777178317871789180118111823 183118471861186718711873187718791889190119071913 193119331949195119731979198719931997199920032011 201720272029203920532063206920812083208720892099

Prime suspect. Arithmetic progressions such as this 10 -prime sequence are infinitely abundant, if a new proof holds up.
numbers are not truly random, because they are generated by rules, but they behave as random numbers do for certain mathematical purposes. Using these tools, Green and Tao constructed a pseudorandom set of primes and "almost primes," numbers with relatively few prime factors compared to their size.

The last step, establishing the primes as a positive fraction of their pseudorandom set, proved elusive. Then Andrew Granville, a
p. 1066), although Goldston and Yildirim have since salvaged a less farranging finding. But some of the mathematical machinery that these two had set up proved to be tailormade for Green and Tao's research. "They had actually proven exactly what we needed," Tao says.

The paper, which has been submitted to the $A n$ nals of Mathematics, is many months from acceptance. "The problem with a quick assessment of it is that it straddles two areas," Granville says. "All of the number theorists who've looked at it feel that the number-theory half is pretty simple and the ergodic theory is daunting, and the ergodic theorists who've looked at it have thought that the ergodic theory is pretty simple and the number theory is daunting."

Even if a mistake does show up, Granville says, "they've certainly succeeded in bringing in new ideas of real import into the subject." And if the proof holds up? "This could be a turning point for analytic number theory," he says. -BARRY CIPRA

