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Preface

Einstein’s general theory of relativity requires a curved space for the descrip-
tion of the physical world. If one wishes to go beyond a superficial discussion
of the physical relations one needs to set up precise equations for handling
curved space. There is a well-established but rather complicated mathe-
matical technique that does this. It has to be mastered by any student who
wishes to understand Einstein’s theory.

This book is built up from a course of lectures given at the Physics Depart-
ment of Florida State University and has the aim of presenting the indis-
pensible material in a direct and concise form. It does not require previous
knowledge beyond the basic ideas of special relativity and the handling of
differentiations of field functions. It will enable the student to pass through
the main obstacles of understanding general relativity with the minimum
expenditure of time and trouble and to become qualified to continue more
deeply into any specialized aspects of the subject that interest him.

P. A. M. Dirac
Tallahassee, Florida
February 1975
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. Special relativity

For the space-time of physics we need four coordinates, the time ¢ and threc
space coordinates x, y, z. We put

t=x% x=x! y=x) z=x3

so that the four coordinates may be written x*, where the suffix u takes on the
four values 0, 1, 2, 3. The suffix is written in the upper position in order that
we may maintain a “balancing” of the suffixes in all the general equations
of the theory. The precise meaning of balancing will become clear a little
later.

Let us take a point close to the point that we originally considered and let
its coordinates be x* + dx*. The four quantities dx* which form the dis-
placement may be considered as the components of a vector. The laws of
special relativity allow us to make linear nonhomogeneous transformations
of the coordinates, resulting in linear homogeneous transformations of the
dx". These are such that, if we choose units of distance and of time such that
the velocity of light is unity,

(@x%)? — (dx)? — (dx?)? — (dx)? (L1)

is invariant.

Any set of four quantities A* that transform under a change of coordinates
in the same way as the dx* form what is called a contravariant vector. The
invariant quantity

(A2 = (4')? = (A7) = (4 = (4, 4) (1.2)

may be called the squared length of the vector. With a second contravariant
vector B, we have the scalar product invariant

A°B® — A'B' — 4?B? — A®B® = (4, B). (1.3)

In order to get a convenient way of writing such invariants we introduce
the device of lowering suffixes. Define
Ay = =A% (14)

Ag=A° A =-A', A= —A%

Then the expression on the left-hand side of (1.2) may be written 4, 4%, in
which it is understood that a summation is to be taken over the four values
of u. With the same notation we can write (1.3) as 4, B or else A*B,,.
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The four quantities 4, introduced by (1.4) may also be considered as the
components of a vector. Their transformation laws under a change of co-
ordinates are somewhat different from those of the 4*, because of the dif-
ferences in sign, and the vector is called a covariant vector.

From the two contravariant vectors A* and B* we may form the sixteen
quantities A*B". The suffix v, like all the Greek suffixes appearing in this work,
also takes on the four values 0, 1, 2, 3. These sixteen quantities form the com-
ponents of a tensor of the second rank. It is sometimes called the outer
product of the vectors A* and B, as distinct from the scalar product (1.3),
which is called the inner produict.

The tensor 4*B” is a rather special tensor because there are special re-
lations between its components. But we can add together several tensors
constructed in this way to get a general tensor of the second rank; say

T = A*B* + A"B" + A"B"™ + ---. (1.5)

The important thing about the general tensor is that under a transformation
of coordinates its components transform in the same way as the quantities
A"B".

We may lower one of the suffixes in T*" by applying the lowering process
to each of the terms on the right-hand side of (1.5). Thus we may form T,” or
T*,.We may lower both suffixes to get T, .

In 7,” we may set v = p and get T,” This is to be summed over the four
values of 4. A summation is always implied over a suffix that occurs twice in a
term. Thus T,* is a scalar. It is equal to T* .

We may continue this process and multiply more than two vectors to-
gether, taking care that their suffixes are all different. In this way we can
construct tensors of higher rank. If the vectors are all contravariant, we get
a tensor with all its suffixes upstairs. We may then lower any of the suffixes
and so get a general tensor with any number of suffixes upstairs and any
number downstairs.

We may set adownstairs suffix equal to an upstairs one. We then have to
sum over all values of this suffix. The suffix becomes a dummy. We are left
with a tensor having two fewer effective suffixes than the original one. This
process is called contraction. Thus, if we start with the fourth-rank tensor
T*,,", one way of contracting it is to put ¢ = p, which gives the second rank
tensor T*,, having only sixteen components, arising from the four values of
pand v. We could contract again to get the scalar T*,,°, with just one com-
ponent.
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At this stage one can appreciate the balancing of suffixes. Any effective
suffix occurring in an equation appears once and only once in each term of
the equation, and always upstairs or always downstairs. A suffix occurring
twice in a term is a dummy, and it must occur once upstairs and once down-
stairs. It may be replaced by any other Greek letter not already mentioned
in the term. Thus T*, » = T*,.* A suffix must never occur more than twice in
a term.

1 Oblique axes

Before passing to the formalism of general relativity it is convenicnt to
consider an intermediate formalism—special relativity referred to oblique
rectilinear axes.

If we make a transformation to oblique axes, each of the dx* mentioned
in (1.1) becomes a linear function of the new dx* and the quadratic form (1.1)
becomes a general quadratic form in the new dx*. We may write it

Gy dx* dx’, (2.1)

with summations understood over both u and v. The coefficients g, appearing
here depend on the system of oblique axes. Of course we take v = Gops
because any difference of g,, and g,, would not show up in the quadratic
form (2.1). There are thus ten independent coefficients Guv-

A general contravariant vector has four components A* which transform
like the dx* under any transformation of the oblique axes. Thus

g, A A"
is invariant. It is the squared length of the vector 4*.

Let B* be a second contravariant vector; then A* + AB* is still another,
for any value of the number A. Its squared length is

94" + AB*)(A” + AB") = g,, A*A” + Ag,, A*B’ + g,,A"B*) + lngB“B'.

This must be an invariant for all values of A. It follows that the term indepen-
dent of 1 and the coefficients of 2 and A> must separately be invariants. The
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coefficient of 4 is
9, A"B’ + g,,A"B* = 2g,, A*B",

since in the second term on the left we may interchange u and v and then
use g,, = g,,. Thus we find that g, A*B" is an invariant. It is the scalar
product of A* and B*.

Let g be determinant of the g,,. It must not vanish; otherwise the four
axes would not provide independent directions in space-time and would
not be suitable as axes. For the orthogonal axes of the preceding section the
diagonal elements of g, are 1, —1, —1, —1 and the nondiagonal elements
are zero. Thus g = — 1. With oblique axes g must still be negative, because
the oblique axes can be obtained from the orthogonal ones by a continuous
process, resulting in g varying continuously, and g cannot pass through the
value zero.

Define the covariant vector 4,, with a downstairs suffix, by

A, =g, A" (22

Since the determinant g does not vanish, these equations can be solved for
A in terms of the A,,. Let the result be
A = g7A,. 23)
Each g"* equals the cofactor of the corresponding g,,, in the determinant of
the g,,,, divided by the determinant itself. It follows that g** = g**.
Let us substitute for the A® in (2.2) their values given by (2.3). We must

replace the dummy g in (2.3) by some other Greek letter, say p, in order not
to have three u’s in the same term. We get

A, =9,9"4,.
Since this equation must hold for any four quantities 4,, we can infer
99" =45, (24)
where

g =1 forp=np,

2.5
=0 foru#p. @3)

The formula (2.2) may be used to lower any upper suffix occurring in a
tensor. Similarly, (2.3) can be used to raise any downstairs suffix. If a suffix is
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lowered and raised again, the result is the same as the original tensor, on
account of (2.4) and (2.5). Note that g4 just produces a substitution of p for p,

A=A,
or of u for p,
ghA,=A,
If we apply the rule for raising a suffix to the ping,,,, we get
9 = 9"
This agrees with (2.4), if we take into account that in g°, we may write the

suffixes one above the other because of the symmetry of g,,,. Further we may
raise the suffix v by the same rule and get

g = 9”5,
a result which follows immediately from (2.5). The rules for raising and lower-
ing suffixes apply to all the suffixes in g,,,, g%, 9"

3. Curvilinear coordinates

We now pass on to a system of curvilinear coordinates. We shall deal with
quantities which are located at a point in space. Such a quantity may have
various components, which are then referred to the axes at that point. There
may be a quantity of the same nature at all points of space. It then becomes a
field quantity.

If we take such a quantity Q (or one of its components if it has several),
we can differentiate it with respect to any of the four coordinates. We write
the result

9

ox*

=Q,

A downstairs suffix preceded by a comma will always denote a derivative
in this way. We put the suffix 4 downstairs in order to balance the upstairs
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in the denominator on the left. We can see that the suffixes balance by noting
that the change in Q, when we pass from the point x* to the neighboring point
x* + Ox*, is

00 =Q, ox*. (3.1)

We shall have vectors and tensors located at a point, with various com-
ponents referring to the axes at that point. When we change our system of
coordinates, the components will change according to the same laws as in the
preceding section, depending on the change of axes at the point concerned. We
shall have a g,, and a g*" to lower and raise suffixes, as before. But they are no
longer constants. They vary from point to point. They are field quantities.

Let us see the effect of a particular change in the coordinate system.
Take new curvilinear coordinates x™, each a function of the four x’s. They
may be written more conveniently x*', with the prime attached to the suffix
rather than the main symbol.

Making a small variation in the x*, we get the four quantities 5x* forming
the components of a contravariant vector. Referred to the new axes, this
vector has the components

ox* = ZXT’: 8x* = x* 6x",
with the notation of (3.1). This gives the law for the transformation of any
contravariant vector 4”; namely,

AY = xh A" (3.2)
Interchanging the two systems of axes and changing the suffixes, we get
At =xh oar. (3.3)
We know from the laws of partial differentiation that
oxt ax
a9
with the notation (2.5). Thus
x_’:‘.xf‘; =gl (3.4)
This enables us to see that the two equations (3.2) and (3.3) are consistent,
since if we substitute (3.2) into the right-hand side of (3.3), we get

XA XM A = ghar = A,

3. CURVILINEAR COORDINATES 7

To see how a covariant vector B, transforms, we use the condition that
A"B, is invariant. Thus with the help of (3.3)

A"B, = A*B, = x%, A*B,.

This result must hold for all values of the four A*'; therefore we can equate the
coefficients of A*" and get

B, = xi.B,. 3.5

We can now use the formulas (3.2) and (3.5) to transform any tensor with
any upstairs and downstairs suffixes. We just have to use coefficients like
x¥ for each upstairs suffix and like x*; for each downstairs suffix and make all
the suffixes balance. For example

T, = x3xhx, T, (3.6)

Any quantity that transforms according to this law is a tensor. This may be
taken as the definition of a tensor.

It should be noted that it has a meaning for a tensor to be symmetrical or
antisymmetrical between two suffixes like 4 and g, because this property of
symmetry is preserved with the change of coordinates.

The formula (3.4) may be written

2B 1
xexhgy =gl

It just shows that g is a tensor. We have also, for any vectors A%, B®,
9wy A*BY =g, A"B* = g, x* x" A" BF.

Since this holds for all values of A, B?', we can infer

Gup = Guu X Xp. 3.7

This shows that g,,, is a tensor. Similarly, g"* is a tensor. They are called
the fundamental tensors.

IS is any scalar field quantity, it can be considered either as a function of
the four x* or of the four x*. From the laws of partial differentiation

S, =8,x4.

Hence the S ; transform like the B, of equation (3.5) and thus the derivative
of a scalar field is a covariant vector field.
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4. HNontensors

We can have a quantity N*,,_ with various up and down suffixes, which is not
a tensor. If it is a tensor, it must transform under a change of coordinate
system according to the law exemplified by (3.6). With any other law it is a
nontensor. A tensor has the property that if all the components vanish in
one system of coordinates, they vanish in every system of coordinates. This
may not hold for a nontensor.

For a nontensor we can raise and lower suffixes by the same rules as for a

tensor. Thus, for example,
ayNE = N
gUN",, = N*,.

The consistency of these rules is quite independent of the transformation laws
to a different system of coordinates. Similarly, we can contract a nontensor by
putting an upper and lower suffix equal.

We may have tensors and nontensors appearing together in the same equa-
tion. The rules for balancing suffixes apply equally to tensors and non-
tensors.

THE QUOTIENT TH EOREM
Suppose P, is such that A*P,,, is a tensor for any vector A*. Then P,,,isa
tensor.
To prove it, write A*P,,, = Q. Weare given that it is a tensor; therefore
pr = Q,.’v‘ x“,x",

Thus

AP,y = A¥ Py Xy
Since A* is a vector, we have from (3.2),
AV = A%
So

A*P g, = ArxE P,uv,vxf‘,;xf;.

5. CURVED SPACE

This equation must hold for all values of A% so

Pogy = Py XXX,
showing that P, is a tensor.
The theorem also holds if P, is replaced by a quantity with any number

of suffixes, and if some of the suffixes are upstairs.

5. (urved Space

One can easily imagine a curved two-dimensional space as a surface im-
mersed in Euclidean three-dimensional space. In the same way, one can have a
curved four-dimensional space immersed in a flat space of a larger number
of dimensions. Such a curved space is called a Riemann space. A small region
of it is approximately flat.

Einstein assumed that physical space is of this nature and thereby laid
the foundation for his theory of gravitation.

For dealing with curved space one cannot introduce a rectilinear system of
axes: One has to use curvilinear coordinates, such as those dealt with in
Section 3. The whole formalism of that section can be applied to curved
space, because all the equations are local ones which are not disturbed by the
curvature.

The invariant distance ds between a point x* and a neighboring point
x* + dx* is given by

ds* = g,, dx* dx”
like (2.1). ds is real for a timelike interval and imaginary for a spacelike

interval.

th a network of curvilinear coordinates the g,,,, given as functions of the
co-ordmates, fix all the elements of distance; so they fix the metric. They deter-
mine both the coordinate system and the curvature of the space.
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6. Parallel displacement

Suppose we have a vector A* located at a point P. If the space is curved,
we cannot give a meaning to a parallel vector at a different point Q, as one can
easily see if one thinks of the example of a curved two-dimensional space in a
three-dimensional Euclidean space. However, if we take a point P’ close to P,
there is a parallel vector at P, with an uncertainty of the second order,
counting the distance from P to P’ as the first order. Thus we can give a
meaning to displacing the vector A* from P to P’ keeping it parallel to
itself and keeping the length constant.

We can transfer the vector continuously along a path by this process of
parallel displacement. Taking a path from P to Q, we end up with a vector at
Q which is parallel to the original vector at P with respect to this path. But a
different path would give a different result. There is no absolute meaning

to a parallel vector at Q. If we transport the vector at P by parallel displace--

ment around a closed loop, we shall end up with a vector at P which is usually
in a different direction.

We can get equations for the parallel displacement of a vector by supposing
our four-dimensional physical space to be immersed in a flat space of a higher
number of dimensions; say N. In this N-dimensional space we introduce
rectilinear coordinates z"n = 1, 2,..., N). These coordinates do not need to
be orthogonal, only rectilinear. Between two neighboring points there is an
invariant distance ds given by

ds? = h,, dz" dz", (6.1)

summed forn,m = 1,2,..., N. The h,,, are constants, unlike the g,v- We may
use them to lower suffixes in the N-dimensional space; thus

dz, = h,, dz".

Physical space forms a four-dimensional “surface” in the flat N-di-
mensional space. Each point x* in the surface determines a definite point y"
in the N-dimensional space. Each coordinate y" is a function of the four
x’s; say y"(x). The equations of the surface would be given by eliminating the
four x’s from the Ny"(x)’s. There are N — 4 such equations.

By differentiating the y"(x) with respect to the parameters x*, we get

) _
E R

6. PARALLEL DISPLACEMENT n

For two neighboring points in the surface differing by dx*, we have
dy" =y, Ox*. 6.2)
The squared distance between them is, from (6.1)
852 = Ry 63" 6Y™ = By VT 634 S5,
We may write it
o2 = y" v, , 6x" 5x°
on account of the h,,, being constants. We also have
5s? = g,, 6x" 6x".
Hence
Guv = ViuVn- (63)

Take a contravariant vector 4* in physical space, located at the point x.
Its components 4" are like the 6x* of (6.2). They will provide a contravariant
vector A" in the N-dimensional space, like the §y" of (6.2). Thus

A=y A, (6.4)

This vector A", of course, lies in the surface.

Now shift the vector A", keeping it parallel to itself (which means, of course,
keeping the components constant), to a neighboring point x + dx in the
surface. It will no longer lie in the surface at the new point, on account of the
curvature of the surface. But we can project it on to the surface, to get a
definite vector lying in the surface.

The projection process consists in splitting the vector into two parts, a
tangential part and a normal part, and discarding the normal part. Thus

A" = AL, + AL, (6.5)
Now if K* denotes the components of Af,, referred to the x coordinate
system in the surface, we have, corresponding to (6.4),
Al = K*Y(x + d), (6.6)
with the coefficients y”, taken at the new point x + dx.

Apor is defined to be orthogonal to every tangential vector at the point
x + dx, and thus to every vector like the right-hand side of (6.6), no matter
what the K* are. Thus

A;'my,,'"(x +dx)=0.
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If we now multiply (6.5) by y, (x + dx), the A"

nor term drops out and we are
left with

A"y, (x + dx) = K"y"(x + dx)y, (x + dX)
= K"g,,(x + dx)

from (6.3). Thus to the first order in dx
K (x + dx) = A"[Y, (%) + Yyy,q dx7]

=AY,y + Yas 4X°]
= A+ AV Y, dXC

This K, is the result of parallel displacement of A, to the point x + dx. We
may put

K, — A, =dA,,
50 dA, denotes the change in 4, under parallel displacement. Then we have

dA, = Ay, dx. ©7)

1. Christoffel symbols

By differentiating (6.3) we get (omitting the second comma with two dif-
ferentiations)

Guva = Vi Yny + ViuVnva
= Ve Vs + Vnvo Vo> (7.1)

since we can move the suffix n freely up and down, on account of the con-
stancy of the h,,,. Interchanging y and o in (7.1) we get

Goviu = YnouVw + Ynwu Vo (72)
Interchanging v and ¢ in (7.1)

Guor = YnuvYie + Ynav Ve (7.3)
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Now take (7.1) + (7.3) — (7.2) and divide by 2. The result is
Huvio + Guosy = Juos) = YnvoViu: (1.4)
Put
Do = H0y0 + Guow = Guod)- (1.5)

It is called a Christoffel symbol of the first kind. It is symmetrical between
the last two suffixes. It is a nontensor. A simple consequence of (7.5) is

Do + Toio = Guv.o- (7.6)
We see now that (6.7) can be written
dA, = A'T,,, dx°. (7.7

All reference to the N-dimensional space has now disappeared, as the
Christoffel symbol involves only the metric g, of physical space.

We can infer that the length of a vector is unchanged by parallel dis-
placement. We have

d(gA,A) = g A, dA, + g™ A, dA, + A,A,9" , dx°
= A dA, + A dA, + A, Agg®, dx°
= A AT, dx" + APA'T,, dx" + A A;g%., dx°
= A 4G, , dx° + A,Ayg™, dx°. (1.8)

Now g™ ;g,, + §%gu.0 = (6°9,).0 = g5.s = 0. Multiplying by ¢, we get
9% 0= —9"9" 9.0 (79)

This is a useful formula giving the derivative of g* in terms of the deriva-
tive of g,,,. It allows us to infer

AAgg? = — A" A0

and so the expression (7.8) vanishes. Thus the length of the vector is constant.
In particular, a null vector (i.e., a vector of zero length) remains a null vector
under parallel displacement.

The constancy of the length of the vector follows also from geometrical
arguments. When we split up the vector A" into tangential and normal parts
according to (6.5), the normal part is infinitesimal and is orthogonal to the
tangential part. It follows that, to the first order, the length of the whole vector
equals that of its tangential part.
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The constancy of the length of any vector requires the constancy of the
scalar product g**A4,, B, of any two vectors 4 and B. This can be inferred from
the constancy of the length of A + 1B for any value of the parameter A.

It is frequently useful to raise the first suffix of the Christoffel symbol so as
to form

r, = y‘“r‘ur

It is then called a Christoffel symbol of the second kind. Tt is symmetrical
between its two lower suffixes. As explained in Section 4, this raising is quite
permissible, even for a nontensor.

The formula (7.7) may be rewritten

dA, = T% A, dx°. (7.10)
It is the standard formula referring to covariant components. For a second
vector B we have
d(4,B") = 0
A, dB' = —B"dA, = —B'T% 4, dx°
= —B'T}, A4, dx".
This must hold for any 4,, so we get
dB* = —T;, B"dx’. (7.11)

This is the standard formula for parallel displacement referring to contra-
variant components.

8. Geodesics

Take a point with coordinates z# and suppose it moves along a track;
we then have z* a function of some parameter t. Put dz*/dt = u*.

There is a vector u* at each point of the track. Suppose that as we go along
the track the vector u* gets shifted by paralled displacement. Then the whole
track is determined if we are given the initial point and the initial value of

8. GEODESICS 15

the vector u*. We just have to shift the initial point from z* to z* + u* dr,
then shift the vector u” to this new point by parallel displacement, then shift
the point again in the direction fixed by the new u*, and so on. Not only
is the track determined, but also the parameter t along it. A track produced
in this way is called a geodesic.

If the vector u* is initially a null vector, it always remains a null vector
and the track is called a null geodesic. If the vector u* is initially timelike
(i, u'u, > 0),itis always timelike and we have a timelike geodesic. Similarly,
if u* is initially spacelike (u*u, < 0), it is always spacelike and we have a
spacelike geodesic.

We get the equations of a geodesic by applying (7.11) with B* = u” and
dx® = dz°. Thus

du” dz®
— YUt — =0 8.1
dt + Dau dt @1
or
d*z” , dz"dz®

—5 ——= 82
PRl e ®2)

For a timelike geodesic we may multiply the initial u* by a factor so as to
make its length unity. This merely requires a change in the scale of . The
vector u* now always has the length unity. It is just the velocity vector
v* = dz*/ds, and the parameter t has become the proper time s.

Equation (8.1) becomes

dv*

= + I, 00" = 0. (8.3)

Equation (8.2) becomes
d?z" , dz"dz’

e n = (8.4)

We make the physical assumption that the world line of a particle not
acted on by any forces, except gravitational, is a timelike geodesic. This
replaces Newton’s first law of motion. Equation (8.4) fixes the acceleration
and provides the equations of motion.

We also make the assumption that the path of a ray of light is a null
geodesic. It is fixed by equation (8.2) referring to some parameter t along the
path. The proper time s cannot now be used because ds vanishes.



16 GENERAL THEORY OF RELATIVITY

9. The stationary property of geodesics

A geodesic that is not a null geodesic has the property that { ds, taken along
a section of the track with the end points P and Q, is stationary if one makes a
small variation of the track keeping the end points fixed.

Let us suppose each point of the track, with coordinates z*, is shifted
so that its coordinates become z* + §z*. If dz* denotes an element along the
track,

ds? = g,, dz* dz".
Thus
2ds é(ds) = dz* dz” 8g,, + g, dz* bdz" + g, dz* ddz*
=dz*dz'g,,, 62* + 2g,, dz* &dz*.
Now
odz* = doz*.

Thus, with the help of dz* = v* ds,

. déz?
8(ds) = (%yum v 8zt + g, 0" ‘dz—) ds.

déz?*
é fds = Jé(ds) =J‘l:%g“”v“v" 8z% + g, 0" T:J ds.

By partial integration, using the condition that z* = 0 at the end points
P and Q, we get

Hence

d
5 fds - J’ [%,;M,Ju“u" - 2O v“)] 524 ds. ©.1)
The condition for this to vanish with arbitrary 6z* is

d
Z 9u?) = 20,070 = 0. ©.2)

d dv* N
s (9,.1 V) = Gua ’n + g,.a,v"“”

dv* V
=9 s + %(!hu.u + g/\v.u)v“v .
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Thus the condition (9.2) becomes

dv* ,
g"‘d_s + T, 00" = 0.

Multiplying this by g*, it becomes

o
% + [, 0" = 0,
which is just the condition (8.3) for a geodesic.

This work shows that for a geodesic, (9.1) vanishes and | ds is stationary.
Conversely, if we assume that { ds is stationary, we can infer that the track is a
geodesic. Thus we may use the stationary condition as the definition of a
geodesic, except in the case of a null geodesic.

0. Covariant differentiation

Let S be a scalar field. Its derivative S, is a covariant vector, as we saw in
Section 3. Now let 4, be a vector field. Is its derivative A, atensor?

We must examine how A, , transforms under a change of coordinate
system. With the notation in Section 3, A, transforms to

Ay = A, X5
like equation (3.5), and hence
Au'.V' = (Apx:l')-'/
= Aﬂ.vx::"x.‘:l' + Apx.‘;l'l'"

The last term should not be here if we are to have the correct transformation
law for a tensor. Thus 4, , is a nontensor.

We can, however, modify the process of differentiation so as to get a tensor.
Let us take the vector A, at the point x and shift it to x + dx by parallel

displacement. It is still a vector. We may subtract it from the vector A, at
x + dx and the difference will be a vector. It is, to the first order

A% + dx) — [A,(0) + T%, 4, dx"] = (4,, — T2, 4) dx.
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This quantity is a vector for any vector dx"; hence, by the quotient theorem
of Section 4, the coefficient

Ay — T4,
is a tensor. One can easily verify directly that it transforms correctly under a

change of coordinate system.
It is called the covariant derivative of 4, and is written

Apy=A,, — Th Ay (10.1)

The sign : before a lower suffix will always denote a covariant derivative,
just as the comma denotes an ordinary derivative.

Let B, be a second vector. We define the outer product 4, B, to have the
covariant derivative

(4,B,)., = A,,B, + A,B,,. (10.2)
Evidently it is a tensor with three suffixes. It has the value

(4,B)., = (4,, = T}, 4B, + A,(B,, — T, B,)
=(A4,B),, = [}, 4,B, — [, 4,B,.

Let T,, be a tensor with two suffixes. It is expressible as a sum of terms like
A, B,, so its covariant derivative is

Too=T re,T, -IT, (10.3)

nvio uve L ope vo ‘pa
The rule can be extended to the covariant derivative of a tensor Y,, withany
number of suffixes downstairs:

Y, =Y,

nv...to uv....0

— a I term for each suffix. (10.4)

In each of these I" terms we must make the suffixes balance, which is sufficient
to fix how the suffixes go.

The case of a scalar is included in the general formula (10.4) with the
number of suffixes in Y zero.

Y, =Y

0 a

(10.5)
Let us apply (10.3) to the fundamental tensor g,,. It gives
Guvie = Guve ~ Dasbay = T30 Gpa
=Guv,e ~ rvuu - ruvu =0

from (7.6). Thus the g,, count as constants under covariant differentiation.
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Formula (10.2) is the usual rule that one uses for differentiating a product.
We assume this usual rule holds also for the covariant derivative of the scalar
product of two vectors. Thus

(4"B,),, = A*,B, + A"B,,,.
We get, according to (10.5) and (10.1),
(4"B,), = A, B, + A*(B,, — T}, Ba);
and hence
A% B, = A", B, — A°T,,B,.
Since this holds for any B,, we get
Ay = Ay + T A% (10.7)

which is the basic formula for the covariant derivative of a contravariant
vector. The same Christoffel symbol occurs as in the basic formula (10.1)
for a covariant vector, but now there is a + sign. The arrangement of the
suffixes is completely determined by the balancing requirement.

We can extend the formalism so as to include the covariant derivative of
any tensor with any number of upstairs and downstairs suffixes. A I' term
appears for each suffix, with a + sign if the suffix is upstairs and a — sign ifit is
downstairs. If we contract two suffixes in the tensor, the corresponding I
terms cancel.

The formula for the covariant derivative of a product,

(XY), =X,Y + XY, (10.8)

holds quite generally, with X and Y any kind of tensor quantities. On account
of the g,, counting as constants, we can shift suffixes up or down before
covariant differentiation and the result is the same as if we shifted them
afterwards.

The covariant derivative of a nontensor has no meaning.

The laws of physics must be valid in all systems of coordinates. They must
thus be expressible as tensor equations. Whenever they involve the derivative
of a field quantity, it must be a covariant derivative. The field equations of
physics must all be rewritten with the ordinary derivatives replaced by co-
variant derivatives. For example, the d’Alembert equation OV = 0 for a
scalar ¥ becomes, in covariant form

GV = 0.
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This gives, from (10.1) and (10.5),
gV, — T, V) =0 (10.9)

Even if one is working with flat space (which means neglecting the gravit-
ational field) and one is using curvilinear coordinates, one must write one’s
equations in terms of covariant derivatives if one wants them to hold in all
systems of coordinates.

il.  The curvature tensor

With the product law (10.8) we sce that covariant differentiation is very similar
to ordinary differentiations. But there is an important property of ordinary
differentiation, that if we perform two differentiations in succession their
order does not matter, which does not, in general, hold for covariant dif-
ferentiation.
Let us first consider a scalar field S. We have [rom the formula (10.1),
S,w=395,,—-TI.S

v v uvia

=S, ~TnS, (11.1)
This is symmetrical between u and v, so in this case the order of the covariant
differentiations does not matter.

Now let us take a vector A, and apply two covariant differentiations to it.
From the formula (10.3) with 4,,, for T,, we get
Avpia = Avpg = T Auy — T3 Ay,
=A,, - T,4), - T4, - T5,45) — T}(A,. — T, Ay
=Aypo A — ThAsy — T3 Ava
- A,(I‘" -Iert — I":‘MI'L).

oo val ap
Interchange p and o here and subtract from the previous expression. The
result is

Aypig = Ay = A4RE (11.2)

vipio vieip
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where

R, =Tf,, - T8 +T%I% — %17, (11.3)
The left-hand side of (11.2) is a tensor. It follows that the right-hand
side of (11.2) is a tensor. This holds for any vector Aj: therefore, by the quotient
theorem in Section 4, R4, is a tensor. It is called the Riemann-Christoffel
tensor or the curvature tensor.
It has the obvious property

RO, =R, . (11.4)
Also, we easily see from (11.3) that
Rl,, + R0, + RS, =0. (11.5)

Let us lower the suffix # and put it as the first suffix. We get
Ruvw =Yup Rf.m =YGup r'v’,., + 17, ruﬂp = {po),

where the symbol {po) is used to denote the preceding terms with pand o
interchanged. Thus

Ryvps = Tuvep = 9up s Ths + Tppp Tl — <p0>
= ruvv.p - rml‘f, —<po),

from (7.6). So from (7.5)

— 1
Rivps = 1Gpevo = Gvaunp = Gupwvo + Gvpuue) + Tauo Ty — T, T2

(11.6)
Some further symmetries now show up; namely,
Ryvpe = =Ryyps (11.7)
and
Ryvpo = Roppy = Ropyy (11.8)

The result of all these symmetries is that, of the 256 components of R,,,,,0nly
20 are independent.
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[ The condition for fiat space

If space is flat, we may choose a system of coordinates that is rectilinear,
and then the g, are constant. The tensor R,,,, then vanishes.

Conversely, if R, ,, vanishes, one can prove that the space is flat. Let us
take a vector A, situated at the point x and shift it by parallel displacement
to the point x + dx. Then shift it by parallel displacement to the point
x +dx + ox. If R,,,, vanishes, the result must be the same as if we had
shifted it first from x to x + x, then to x + &x + dx. Thus we can shift the
vector to a distant point and the result we get is independent of the path to
the distant point. Therefore, if we shift the original vector A, at x to all points
by parallel displacement, we get a vector field that satisfies A, =0,0r

Ay =T0 A4, (2.1

Can such a vector field be the gradient of a scalar? Let us put A,=S,in
(12.1). We get

S, =TS (12.2)

v nv,a
On account of the symmetry of I';, in the lower suffixes, we have the same
value for S ,, as S, and the equations (12.2) are integrable.

Let us take four independent scalars satisfying (12.2) and let us take
them to be the coordinates x*' of a new system of coordinates. Then

a’ g
X = T5,x%.

According to the transformation law (3.7),
gnl = g,r,.x“’;xﬂ.
Differentiating this equation with respect to x*, we get
Guaw = G XX = g O X5 + X5 X5 )
= 9up(TL XX + x5 T3, x0)
=9l + 9,17,
= I-A,.v + r‘u\v = Guay
from (7.6). Thus
Gup o XxP = 0.
It follows that g, , = 0. Referred to the new system of coordinates, the

fundamental tensor is constant. Thus we have flat space referred to recti-
linear coordinates.
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B.  The Bianci relations

To deal with the second covariant derivative of a tensor, take first the case in
which the tensor is the outer product of two vectors A,B,. We have

(4,B).p;e = (A, B, + A,B,,),

nip e nup.

= AupoBe+ A, By + AyoB, + A,B,,,.
Now interchange p and ¢ and subtract. We get from (11.2)
(4,B)..g = (A4, B),,, = A, R, B, + AR}, B,.

A general tensor T, is expressible as a sum of terms like A, B, so it must
satisfy

T, T, =T.R

a
wnepie — lunaip at N ppa

+ T,R,. (13.1)
Now take T, to be the covariant derivative of a vector A,... We get

A Apcary = Ag R0 + A, R®

wirpie — pivaip a:t N upa o "
In this formula make cyclic permutations of 7, p, ¢ and add the three equations
so obtained. The left-hand side gives

Aspios = Ayaipe + €Y perm
= (4,R;,,).. + cyc perm
= A...R},, + A,R;,,.. + cyc perm. (13.2)

The right-hand side gives
A,.RS,, + cyc perm, (13.3)

upo

as the remaining terms cancel from (11.5). The first term of (13.2) cancels with
(13.3) and we are left with

A, R 5. + cyc perm = 0.

The factor A, occurs throughout this equation and may be canceled out, We
are left with

R + R}

not:p

woaie + Rips = 0. (13.9)

The curvature tensor satisfies these differential equations as well as all
the symmetry relations in Section 11. They are known as the Bianci relations.
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14.  The Ric tensor

Let us contract two of the suffixes in R, ,,. If we take two with respect to
which it is antisymmetrical, we get zero, of course. If we take any other two
we get the same result, apart from the sign, because of the symmetries (11.4),
(11.7), and (11.8). Let us take the first and last and put

Ry, =R

vou vo*

It is called the Ricci tensor.
By multiplying (11.8) by g*° we get

R,, =R

vo v (14.1)
The Ricci tensor is symmetrical.

We may contract again and form
g”R,, = R} =R,

say. This R is a scalar and is called the scalar curvature or total curvature. It is
defined in such a way that it is positive for the surface of a sphere in three
dimensions, as one can check by a straightforward calculation.

The Bianci relation (13.4) involves five suffixes. Let us contract it twice and
get a relation with one nondummy suffix. Put T = « and multiply by g**. The
result is

9""(R} oz + Rigarp + Riapis) = 0
or
(0" Rpa)a + (" Rigp + (@*°Rip)g = 0. (14.2)
Now

g"”R‘;,, = gwgﬂﬂRﬂmw = g“"g""Ru,.,,,
= "Ry, = K.

One can write R? with the suffixes one over the other on account of R,, being
symmetrical. Equation (14.2) now becomes

Ri. + (@""Ru), — Ry =0

or
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which is the Bianci relation for the Ricci tensor. If we raise the suffix g, we get

(R — 14°R),, = 0. (143)
The explicit expression for the Ricci tensor is, from (11.3)
R, =T;, -5, — T8I+ 2,00, (14.4)

The first term here does not appear to be symmetrical in g and v, although
the other three terms evidently are. To establish that the first term really is
symmetrical we need a little calculation.

To differentiate the determinant g we must differentiate each element G
in it and then multiply by the cofactor gg**. Thus

An

9. =99"q,.,- (14.5)

Hence
I‘f“ = gl“ram = '%gAﬂ(yu,n + Jauy = Gud)
1

=39"91, = 3979, = Hlog 9),,. (14.6)

This makes it evident that the first term of (14.4) is symmetrical.

(5. Finstein’s low of gravitation

Up to the present our work has all been pure mathematics (apart from the
physical assumption that the track of a particle is a geodesic). It was done
mainly in the last century and applies to curved space in any number of
dimensions. The only place where the number of dimensions would appear
in the formalism is in the equation

g, = number of dimensions.

Einstein made the assumption that in empty space
R, =0. (15.1)
It constitutes his law of gravitation. “Empty” here means that there is no

matter present and no physical fields except the gravitational field. The
gravitational field does not disturb the emptyness. Other fields do. The
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conditions for empty space hold in a good approximation for the space
between the plancts in the solar system and equation (15.1) applies there.

Flat space obviously satisfies (15.1). The geodesics are then straight lines
and so particles move along straight lines. Where space is not flat, Einstein’s
law puts restrictions on the curvature. Combined with the assumption that
the planets move along geodesics, it gives some information about their
motion.

At first sight Einstein’s law of gravitation does not look anything like
Newton’s. To see a similarity, we must look on the g,,, as potentials describing
the gravitational field. There are ten of them, instead of just the one potential
of the Newtonian theory. They describe not only the gravitational field, but
also the system of coordinates. The gravitational field and the system of
coordinates are inextricably mixed up in the Einstein theory, and one.cannot
describe the one without the other.

Looking upon the g,, as potentials, we find that (15.1) appears as field
equations. They are like the usual field equations of physics in that they are of
the second order, because second derivatives appear in (14.4), as the Christ-
offel symbols involve first derivatives. They are unlike the usual field equa-
tions in that they arc not linear; far from it. The nonlinearity means that the
equations are complicated and it is difficult to get accurate solutions.

16.  The Newtonian approximation

Let us consider a static gravitational field and refer it to a static coordinate
system. The g,, are then constant in time, g,,o = 0. Further, we must
have

Gmo = 0, m=1,273).
This leads to
g™ =0, 9°° = (goo) ™",

and g™ is the reciprocal matrix to g,,,. Roman suffixes like m and n always
take on the values 1, 2, 3. We find that I,,, = 0, and hence also 'y, = 0.
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Let us take a particle that is moving slowly, compared with the velocity of
light. Then v™ is a small quantity, of the first order. With neglect of second-
order quantities,

Goo?® = 1. (16.1)

The particle will move along a geodesic. With neglect of second-order
quantities, the equation (8.3) gives
dv™ m 02 mn 2
ds ~Igot® = =g™Th000°
mn 2
=130""900.0""
Now
dor Qv dxr _do
ds ~dx"ds  dx®
to the first order. Thus

dv™

X0 = %gm"yuu.n W= gm(goouz),n (16.2)
with the help of (16.1). Since the g, are independent of x°, we may lower the
suffix m here and get

o (00" (163)

We see that the particle moves as though it were under the influence of a
potential goo'/2. We have not used Einstein’s law to obtain this result. We now
use Einstein’s law to obtain a condition for the potential, so that it can be
compared with Newton's,

Let us suppose that the gravitational field is weak, so that the curvature
of space is small. Then we may choose our coordinate system so that the
curvature of the coordinate lines (each with three x’s constant) is small.
Under these conditions the g,, are approximately constant, and g,,, , and all
the Christoffel symbols are small. If we count them of the first order and
neglect second-order quantities, Einstein’s law (15.1) becomes, from (14.4)

v ~ e =0.

We can evaluate this most conveniently by contracting (11.6) with p and u
interchanged and neglecting second-order terms. The result is

9" Gpav = Gvasuo — Jupive + Guv.pa) = 0. (16.4)
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Now take yt = v = 0 and use the condition that the g, are independent of
x°. We get

9"™"900,mn = 0. (16.5)

The d’Alembert equation (10.9) becomes, in the weak field approximation,
gV, =0,
In the static case this reduces to the Laplace equation
9"V, = 0.

Equation (16.5) just tells us that g, satisfies the Laplace equation.
We may choose our unit of time so that goo is approximately unity.
Then we may put

Goo =1 + 2V (16.6)

with V small. We get goo'”2 = 1 + ¥ and V becomes the potential. It
satisfies the Laplace equation, so that it can be identified with the Newtonian
potential, equal to —m/r for a mass m at the origin. To check the sign we see
that (16.2) leads to

acceleration = —grad V,

since g™ has the diagonal elements approximately — 1.

We see that Einstein’s law of gravitation goes over to Newton’s when the
field is weak and when it is static. The successes of the Newtonian theory in
explaining the motions of the planets can thus be preserved. The static
approximation is a good one because the velocities of the planets are all small
compared with the velocity of light. The weak field approximation is a good
one because the space is very nearly flat. Let us consider some orders of
magnitude.

The value of 2V on the surface of the earth turns out to be of the order 10~ %,
Thus g4, given by (16.6) is very close to 1. Even so, its difference from 1 is big
enough to produce the important gravitational effects that we see on earth.
Taking the earth’s radius to be of the order 10° cm, we find that Goo,m is of the
order 107'® cm™!. The dcparture from flatness is thus extremely small.
However, this has to be multiplied by the square of the velocity of light,
namely 9 x 10?° (cm/sec)?, to give the acceleration due to gravity at the
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earth’s surface. Thus this acceleration, about 103 cm/sec?, is quiteappreciable,
even though the departure from flatness is far too small to be observed
directly.

{1 The gravitational red shift

Let us take again a static gravitational field and consider an atom at rest
emitting monochromatic radiation. The wavelength of the light will corre-
spond to a definite As. Since the atom is at rest we have, for a static system of
coordinates such as we used in Section 16,

As? = gooAx®,

where Ax® is the period, that is, the time between successive crests referred
to our static coordinate system.

If the light travels to another place, Ax° will remain constant. This Ax°
will not be the same as the period of the same spectral line emitted by a local
atom, which would be As again. The period is thus dependent on the gravi-
tational potential go, at the place where the light was emitted:

Ax®:: g V2

The spectral line will be shifted by this factor goo~*/2.
If we use the Newtonian approximation (16.6), we have

Ax%::1 — V.

V will be negative at a place with a strong gravitational field, such as the
surface of the sun, so light emitted there will be red-shifted when compared
with the corresponding light emitted on earth. The effect can be observed
with the sun’s light but is rather masked by other physical effects, such as the
Doppler effect arising from the motion of the emitting atoms. It can be better
observed in light emitted from a white dwarf star, where the high density of
the matter in the star gives rise to a much stronger gravitational potential
at its surface.
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8. The Schwarzschild solution

The Einstein equations for empty space are nonlinear and are therefore very
complicated, and it is difficult to get accurate solutions of them. There is, how-
ever, one special case which can be solved without too much trouble; namely,
the static spherically symmetric field produced by a spherically symmetric
body at rest.

The static condition means that, with a static coordinate system, the g,,
are independent of the time x° or t and also g,,, = 0. The spatial coordinates
may be taken to be spherical polar coordinates x! = r, x? = 6, x> = ¢. The
most general form for ds? compatible with spherical symmetry is

ds? = U dt? — V dr* — WrX(d6? + sin? 0 d¢?),

where U, ¥, and Ware functions of r only. We may replace r by any function
of r without disturbing the spherical symmetry. We use this freedom to
simplify things as much as possible, and the most convenient arrangement
is to have W = 1. The expression for ds? may then be written

ds* = e** dt* — e** dr? — r* d6* — r? sin? 0 d¢?, (18.1)

with v and 4 functions of r only. They must be chosen to satisfy the Einstein
equations.
We can read off the values of the g,, from (18.1), namely,

Joo = €, g = €, 922 = =17, 933 = —r’sin? 6,
and
G =0 for pus#v
We find
g% = e, gl = —e 24, gt = —r2, g = —r ?sin"20,
and

g =0 for p#wv

It is now necessary to calculate all the Christoffel symbols I';,. Many
of them vanish. The ones that do not are, with primes denoting differentiations
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with respect to r,

Il =ver 2 My =v

Mh=4 If,=ry=r!
I, = —re 2* I3, =cotf

I}y = —rsin?@e ?* T2, = —sin 0 cos 6.

These expressions are to be substituted in (14.4). The results are

oy

Ryo = (—v” SV - T”)e“‘“, (18.2)
.o

Ry =v' =4 +v* = = (18.3)

Ry=(1+r/ —ri)e =1 (18.4)

Ry3 = R,,sin? 6,
with the other components of R, vanishing.
Einstein’s law of gravitation requires these expressions to vanish. The
vanishing of (18.2) and (18.3) leads to
A +v =0

For large values of r the space must approximate to being flat, so that 4 and v
both tend to zero as r — co. It follows that

A+v=0.
The vanishing of (18.4) now gives
(1 +2rv)e* =1
or
(re?’) = 1.
Thus
re?* =r —2m,

where m is a constant of integration. This also makes (18.2) and (18.3) vanish.
We now get

2m
Goo=1-". (18.5)
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The Newtonian approximation must hold for large values of r. Comparing
(18.5) with (16.6), we see that the constant of integration m that has appeared
in (18.5) is just the mass of the central body that is producing the gravitational
field.

The complete solution is

-1
ds? = (1 - 2_'"> de* — (1‘— 27"') dr? —r? d6* — r*sin? 0 dg>.  (18.6)
r

It is known as the Schwarzschild solution. It holds outside the surface of the
body that is producing the field, where there is no matter. Thus it holds fairly
accurately outside the surface of a star.

The solution (18.6) leads to small corrections in the Newtonian theory
for the motions of the planets around the Sun. These corrections are appreci-
able only in the case of Mercury, the nearest planet, and they explain the
discrepancy of the motion of this planet with the Newtonian theory. Thus
they provide a striking confirmation of the Einstein theory.

19.  Black holes

The solution (18.6) becomes singular at r = 2m, because then goo = 0 and
g1y = —oo. It would seem that r = 2m gives a minimum radius for a body
of mass m. But a closer investigation shows that this is not so.

Consider a particle falling into the central body and let its velocity vector
be v" = dz*/ds. Let us suppose that it falls in radially, so that v? = v* = 0.
The motion is determined by the geodesic equation (8.3):

dv®

ke —p,v"0" = —g°°T,,, v"v"
dgoo
= —%gq0, 0% = —g% d;) 0.
Now g°° = 1/go, so we get
dv° dgo0 o
gﬂaE+—ds v’ =0.
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This integrates to
Joo?® =k,

with k a constant. It is the value of goo where the particle starts to fall.
Again, we have

2 2
0 1
1 =g,,0"0" = goov” + g, 0"

Multiplying this equation by g,, and using goog,, = — I, which we obtained
in the last section, we find

2
k’—vlz=goo=1—-Tm.

For a falling body v* < 0, and hence

1/2
v' = —<k2—1+2—rﬂ) .
r

dt 0 -1 Im\ - 12
*="—,=-k<1—3'1’> <k1-1+—"'> .
dr v r r

Let us suppose the particle is close to the critical radius, so r = 2m + ¢ with
¢ small, and let us neglect 2. Then

. 2m 2m
dr € r—2m
This integrates to
t = —2mlog(r — 2m) + constant.

Thus, as r = 2m, t - oo0. The particle takes an infinite time to reach the
critical radius r = 2m.

Let us suppose the particle is emitting light of a certain spectral line,
and is being observed by someone at a large value of r. The light is red-shifted
by a factor goo~'/* = (1 — 2m/r)~ V2, This factor becomes infinite as the
particle approaches the critical radius. All physical processes on the particle
will be observed to be going more and more slowly as it approaches r = 2m.

Now consider an observer traveling with the particle. His time scale is
measured by ds. Now

is:%:_ k2_1+%—”2y
r
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and this tends to —k~! as r tends to 2m. Thus the particle reaches r = 2m
after the lapse of finite proper time for the observer. The traveling observer
has aged only a finite amount when he reaches r = 2m. What will happen
to him aflterwards? He may continue sailing through empty space into
smaller values of r.

To examine the continuation of the Schwarzschild solution for values of
r < 2m, it is necessary to use a nonstatic system of coordinates, so that we
have the g,, varying with the time coordinate. We keep the coordinates 0
and ¢ unchanged, but instead of t and r we use 7 and p, defined by

t=t+ /), p=t+g0), (19.1)

where the functions f and g are at our disposal.
We have, using the prime again to denote the derivative with respect
tor,

2
d — szdpz = (dt + [ dr)? — T’"(m + g dr?
2m ,
- (1 - 27'")01:’ + 2<f’ - szg’>dtdr + (f" - ng' )dﬁ
-1
= (1 - 2—'?),1:1 - (1 - 27'") dr?, (19.2)
r

provided we choose the functions ]and g to satisfy
[ =—¢ (19.3)
and
-1
gt - = (1 - —) . (19.4)

Elimination of f from these equations gives

r\? 2m\~!
g=<2—m) (1_7) . (19.5)

To integrate this equation, put r = y? and 2m = a®. With r > 2m we have
y > a. We now have

dg _, dg _ 2" 1

dy Yar = a y? —a®’
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which gives

_2 . 2 yta
9=z, +2y—a Iogy . (19.6)

Finally, we get from (19.3) and (19.5)

which integrates to

=g-f=p—-1 (19.7)

Thus

r=u(p - 1?3, (19.8)
with

u= G2

In this way we see that we can satisfy the conditions (19.3) and (19.4) and
so we can use (19.2). Substituting into the Schwarzschild solution (18.6),
we get

dst = de? = — 2" dp? 2o — OO + sin 0dgY).  (19.9)
p — 3 ’ '
The critical value r = 2m corresponds, from (19.7), to p — t = 4m/3. There
is no singularity here in the metric (19.9).

We know that the metric (19.9) satisfies the Einstein equations for empty
space in the region r > 2m, because it can be transformed to the Schwarzschild
solution by a mere change of coordinates. We can infer that it satisfies the
Einstein equations also for r < 2m from analytic continuity, because it does
not involve any singularity at r = 2m. It may continue to hold right down to
r=0orp—t=0.

The singularity appears in the connection between the new coordinates
and the original ones, equation (19.1). But once we have established the new
coordinate system we can disregard the previous one and the singularity no
longer appears.

We see that the Schwarzschild solution for empty space can be extended
to the region r < 2m. But this region cannot communicate with the space
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for which r > 2m. Any signal, even a light signal, would take an infinite
time to cross the boundary r = 2m, as we can easily check. Thus we cannot
have direct observational knowledge of the region r < 2m. Such a region
is called a black hole, because things may fall into it (taking an infinite time,
by our clocks, to do so) but nothing can come out.

The question arises whether such a region can actually exist. All we can say
definitely is that the Einstein equations allow it. A massive stellar object
may collapse to a very small radius and the gravitational forces then become
so strong that no known physical forces can hold them in check and prevent
further collapse. It would seem that it would have to collapse into a black
hole. Tt would take an infinite time to do so by our clocks, but only a finite
time relatively to the collapsing matter itself.

10.  Tensor densities

With a transformation of coordinates, an element of four-dimensional
volume transforms according to the law

dx® dx dx? dx* = dx°dx' dx? dxJ, (20.1)
where J is the Jacobian

Ax%x!x¥'xY) . ’
J = ——5—5—5— = determinant of x’,.
a(xoxlxlxl) a

We may write (20.1)
d*x' = Jd*x (20.2)
for brevity.
Now
Gap = X'aGuv Xy

We can look upon the right-hand side as the product of three matrices, the
first matrix having its rows specified by a and columns specified by p’, the
second having its rows specified by ' and columns by v', and the third having
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its rows specified by v’ and columns by f. This product equals the matrix
gap On the left. The corresponding equation must hold between the deter-
minants; therefore

g=1JgJ
or

g=JYy.

Now g is a negative quantity, so we may form / —g, taking the positive
value for the square root. Thus

[—g=1J/—7. (203)

Suppose § is a scalar field quantity, S = S'. Then

jS,/-g d*x = jS, /—g' Jd*x = fS’,/ —g'd*x,
if the region of integration for the x’ corresponds to that for the x. Thus

J.S,/ —gd*x = invariant. (20.4)

We call S\/—g a scalar density, meaning a quantity whose integral is
invariant.

Similarly, for any tensor field T** we may call T**,/—g a tensor
density. The integral

[y s

is a tensor if the domain of integration is small. It is not a tensor if the domain
of integration is not small, because it then consists of a sum of tensors located
at different points and it does not transform in any simple way under a
transformation of coordinates.

The quantity \/—_g will be very much used in the future. For brevity we
shall write it simply as /. We have

979, =2/

Thus the formula (14.5) gives

Vo =", (20.5)
and the formula (14.6) may be written
ey =4, (20.6)
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M. Gauss and Stokes theorems

The vector A* has the covariant divergence A*,,, which is a scalar. We have

Ay = AL+ TULA = AL+ 747

Thus
Ay = (@) @Ly

We can put 4*,, for S in (20.4), and we get the invariant
AR, Jdx = J' (Am)),. d*x.

If the integral is taken over a finite (four-dimensional) volume, the right-hand
side can be converted by Gauss’s theorem to an integral over the boundary
surface (three-dimensional) of the volume.

If A*,, = 0, we have

(A“\/)‘,‘ =0 (21.2)

and this gives us a conservation law; namely, the conservation of a fluid
whose density is 4°\/ and whose flow is given by the three-dimensional
vector A™/ (m = 1, 2, 3). We may integrate (21.2) over a three-dimensional
volume V lying at a definite time x°. The result is

( f A‘k/d’x)0 = - J.(A"‘\/)'md%(

= surface integral over boundary of V.

If there is no current crossing the boundary of V, | A%/ d3x is constant.
These results for a vector 4* cannot be taken over to a tensor with more
than one suffix, in general. Take a two-suffix tensor Y*". In flat space we can
use Gauss’s theorem to express | Y** |, d*x as a surface integral, but in curved
space we cannot in general express j Y,/ d*x as a surface integral. An
exception occurs for an antisymmetrical tensor F** = —F*%,
In this case we have
F®, = F*, + T, F" + T, F,
so
F*, = F", + T, F"” + T, F*

= F"v.v + \/-l\/’ppwr
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from (20.6). Thus
./ =F ), @1.3)

Hence [ F*,, \/d*x = a surface integral, and if F**,, = 0 we have a conser-
vation law.

In the symmetrical case Y** = Y we can get a corresponding equation
with an extra term, provided we put one of the suffixes downstairs and deal
with v,”.,. We have

IAPERAFED W AdR g A8
Putting o = v and using (20.6), we get
Yuv:v - Yuv.v + \/_1\/,u Yl‘u - rﬂ‘” Yo,
Since Y*" is symmetrical, we can replace the [,,, in the last term by
HCae + Tod) = $avy
from (7.6). Thus we get
IASVESS AN BES "I V2 (@14
For a covariant vector A,, we have
A,.:v - Av:u = Au,v - r“:vAp - (Ama - r:”l‘Aﬂ)
=4,, -4, (215)

This result may be stated: covariant curl equals ordinary curl. It holds only
for a covariant vector. For a contravariant vector we could not form the
curl because the suffixes would not balance.

Let us take yp = 1, v = 2. We get

Ayp — Ay = Al,Z - Az,l-

Let us integrate this equation over an area of the surface x° = constant,
x® = constant. From Stokes’s theorem we get

ff(Alzz = Ay,)dx' dx? = J‘ (Ay,2 = Ayy)dx’ dx?

- f(A, dx' + 4, dx?) @L.6)

integrated around the perimeter of the area. Thus we get an integral round a
perimeter equated to a flux crossing the surface bounded by the perimeter.
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The result must hold generally in all coordinate systems, not merely those for
which the equations of the surface are x° = constant, x> = constant.

To get an invariant way of writing the result, we introduce a general
formula for an element of two-dimensional surface. If we take two small
contravariant vectors &* and (¥, the element of surface area that they subtend
is determined by the antisymmetric two-index tensor

ds = o - o0,
Thus, if &* has the components 0, dx', 0, 0, and {* has the components 0, 0,
dx?, 0, then dS*" has the components
dS'? = dx! dx?, dS?' = —dx'dx?,

with the other components vanishing. The left-hand side of (21.6) becomes

([ a5

The right-hand side is cvidently | A, dx*, so the formula becomes

1 ” (A — A,) dS* = f A, dx~, (1.7)

surface perimeter

1. Harmonic coordinates

The d’Alembert equation for a scalar V, namely OV = 0, gives, from (10.9),
9V, — TV = 0. (22.1)

If we are using rectilinear axes in flat space, each of the four coordinates x*
satisfies (Jx* = 0. We might substitute x* for V in (22.1). The result, of course,
is not a tensor equation, because x* is not a scalar like ¥, so it holds only in
certain coordinate systems. It imposes a restriction on the coordinates.

If we substitute x* for ¥, then for V, we must substitute x* = g2 The
equation (22.1) becomes

g°T%, = 0. (22.2)
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Coordinates that satisfy this condition are called harmonic coordinates. They
provide the closest approximation to rectilinear coordinates that we can have
in curved space. We may use them in any problem if we wish to, but very often
they are not worthwhile because the tensor formalism with general co-
ordinates is really quite convenient. For the discussion of gravitational waves,
however, harmonic coordinates are very useful.

We have in general coordinates, from (7.9) and (7.6),

9" 0 = ~9"9" Taps + Tpao)
= -¢"T}, - ¢"Te,. (223)
Thus, with the help of (20.6),

@s = (=g"'Th, — ¢"*Tss + ¢"'Thy)/. (224)

Contracting by putting ¢ = v, we get
@)= =g"Th/- (225)

We see now that an alternative form for the harmonic condition is

@), =0. (22.6)

B.  The electromagnetic field

Maxwell’s equations, as ordinarily written, are

104
= — - — — grad .
E e grad ¢, (23.1)
H = curl 4, (23.2)
10H
[k, b
< curl E, (23.3)
divH =0, (23.4)
10E .
i = curl H — 4mj, (23.5)
div E = 4np. (23.6)
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We must first put them in four-dimensional form for special relativity. The
potentials A and ¢ form a four-vector x* in accordance with

K=¢, K"=4" (m=1273).
Define
Fo=K,,—K,, (23.7)
Then from (23.1)

Thus the six componemsvof the antisymmetric tensor F,, determine the
field quantities E and H.
From the definition (23.7)

Frvo + Frgp + Fopy = 0. (23.8)
This gives the Maxwell equations (23.3) and (23.4). We have
FO, = Fo" = —F" _ divE = anp 239)
from (23.6). Again
0E' 0H® OH?
ax° " axT T ax®
= 4nj. (23.10)

Fl*, = F1° 4 F'2, 4 F13, =

from (23.5). The charge density p and current j™ form a four-vector J* in
accordance with

JO =p, Jm=jm
Thus (23.9) and (23.10) combine into
F® = anJ». (23.11)

In this way the Maxwell equations are put into the four-dimensional form
required by special relativity.
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To pass to general relativity we must write the equations in covariant
form. On account of (21.5) we can write (23.7) immediately as

Fry =Ky = Kye

This gives us a covariant definition of the field quantities F,,. We have
further

Frvo=Fue—ToFay = 0 F 0.
Making cyclic permutations of g, v, and ¢ and adding the three equations so
obtained, we get

F,.,+F

v 4 Py =Fpy+ Frpp + Fopuy =0, (23.12)

voipu uv,o vo,u op,v

from (23.8). So this Maxwell equation goes over immediately to the covariant
form.

Finally, we must deal with the equation {23.11). This is not a valid equation
in general relativity and must be replaced by the covariant equation

Fo, = dnJw, (23.13)
From (21.3), which applies to any antisymmetric two-suffix tensor, we get
(F‘”\/)vv = 47:./"\/.
This leads immediately to
"N = @n)~ F),, = 0.
So we have an equation like (21.2), giving us the law of conservation of

electricity. The conservation of electricity holds accurately, undisturbed
by the curvature of space.

14.  Modification of the Finstein equations by the
presence of matter

The Einstein equations in the absence of matter are

R* =0. (24.1)
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They lead to
R =0;
and hence
R*™ — 4g"™R = 0. (24.2)
If we start with equations (24.2), we get by contraction
R—-2R=0

and so we can get back to (24.1). We may either use (24.1) or (24.2) as the basic
equations for empty space.

In the presence of matter these equations must be modified. Let us suppose
(24.1) is changed to

R® = x» (24.3)
and (24.2) to
R* — g™ R = Y™, (24.9)

Here X" and Y*” are symmetric two-index tensors indicating the presence
of matter.

We see now that (24.4) is the more convenient form to work with, because
we have the Bianci relation (14.3), which tells us that

(R — 1g"R),, = 0.
Hence (24.4) requires
Y®, =0. (24.5)

Any tensor Y*" produced by matter must satisfy this condition; otherwise
the equations (24.4) would not be consistent.

It is convenient to bring in the coefficient —8x and to rewrite equation
(24.4) as

R* — 1g"™R = —8ny™, (24.6)
We shall find that the tensor Y*” with this coefficient is to be interpreted as
the density and flux of (nongravitational) cnergy and momentum. Y*° js the

density and Y*" is the flux.
In flat space equation (24.5) would become

Y™, =0
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and would then give conservation of energy and momentum. In curved space
the conservation of energy and momentum is only approximate. The error
is to be ascribed lo the gravitational field working on the matter and having
itself some energy and momentum.

B The material energy tensor

Suppose we have a distribution of matter whose velocity varies continuously
from one point to a neighboring one. If z* denotes the coordinates of an
element of the matter, we can introduce the velocity vector v* = dz"/ds,
which will be a continuous function of the x's, like a field function. It has
the properties

g, vt =1, (25.1)
0= (Gu 00 = g, (V"% 4 + V¥ 0")
=29,,0"",.
Thus
v, 0%, =0. (25.2)

We may introduce a scalar field p such that the vector field pv* determines
the density and flow of the matter just like J* determines the density and
flow of electricity; that is to say, pv°/ is the density and pv™/ is the flow.
The condition for conservation of the matter is

("), =0
or
(p*),, = 0. (25.3)

The matter that we are considering will have an energy density po°v°,/
and energy flux pv°™,/, and similarly a momentum density pv"v°/ and
momentum flux pv"v™/. Put

" = poiv", (25.4)
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Then T'”\/ gives the density and flux of energy and momentum. T*" is
called the material energy tensor. It is, of course, symmetric.

Can we use T*" for the matter term on the right-hand side of the Einstein
equation (24.6)? For this purpose we require T**,, = 0. We have from the
definition (25.4)

T, = (pv*v"), = v"(pv"),, + pv'v*,,.

The first term here vanishes from the condition for conservation of mass
(25.3). The second term vanishes if the matter moves along geodesics for, if
v* is defined as a continuous field function instead of having a meaning only
on one world line, we have

% =",
So (8.3) becomes
(", + T =0
or
v, 0" =0. (25.5)

We see now that we can substitute the material energy tensor (25.4), with a
suitable numerical coefficient k, into the Einstein equation (24.4). We get

R* — 1g"R = kpv*v". (25.6)

We shall now determine the value of the coefficient k. We go over to the
Newtonian approximation, following the method of Section 16. We note
first that, contracting (25.6), we get

—R = kp.
So (25.6) may be written
R*" = kp(v*v* — 3g").
With the weak field approximation we get, corresponding to (16.4),
39" Gpauy = oo = Gupws + Guvps) = kp(v,0, = 3,,).

We now take a static field and a static distribution of matter, so that v, = 1,
v,, = 0. Putting 4 = v = 0 and neglecting second-order quantities, we find

—$V?g00 = tkp
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or from (16.6)
ViV = —tkp.

To agree with the Poisson equation we must take k = —8xn.
The Einstein equation for the presence of a distribution of matter with a
velocity field thus reads

R* — 1g"R = —8npviv". (25.7)

Thus T*, given by (25.4), is precisely the Y** of equation (24.6).
The condition for conservation of mass (25.3) gives

P + pv*, =05
hence

Z_ﬁ= % * = —pot,. (25.8)
This is a condition that fixes how p varies along the world line of an element
of matter. It allows p to vary arbitrarily from the world line of one element
to that of a neighboring element. Thus we may take p to vanish except for
a packet of world lines forming a tube in space-time. Such a packet would
compose a particle of matter of a finite size. Outside the particle we have
p = 0, and Einstein’s field equation for empty space holds.

It should be noted that, if one assumes the general field equation (25.7), one
can deduce from it two things: (a) the mass is conserved and (b) the mass
moves along geodesics. To do this we note that (left-hand side)., vanishes
from Bianci’s relation, so the equation gives

(pv"v"),, = 0,
or
v¥(pv),, + pv"v*, = 0. (25.9)

Multiply this equation by v,. The second term gives zero from (25.2) and we
are left with (pv'),, = 0, which is just the conservation equation (25.3).
Equation (25.9) now reduces to v*v*,, = 0, which is the geodesic equation. It
is thus not necessary to make the separate assumption that a particle moves
along a geodesic. With a small particle the motion is constrained to lie along
a geodesic by the application of Einstein’s equations for empty space to the
space around the particle.
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16.  The gravitational action principle

Introduce the scalar

I= J.R\/ d*x (26.1)

integrated over a certain four-dimensional volume. Make small variations
9, in the g,,, keeping the g,, and their first derivatives constant on the
boundary. We shall find that putting I = 0 for arbitrary dg,, gives Einstein’s
vacuum equations.

We have from (14.4)
R=g"R,=R*-1L,
where
R* = g"(I,, — | | (26.2)
and
L =g, T —T%,T7,). (26.3)

1 involves second derivatives of g, Since these second derivatives occur
in R*. But they occur only linearly, so they can be removed by partial
integration. We have

RY = @" T, = @ ToDa = @) The + (@), T (264)

The first two terms are perfect differentials, so they will contribute nothing to
I. We therefore need retain only the last two terms of (26.4). With the help
of (22.5) and (22.4) they become

95T/ + (—29"Tf, + g TipT;, /-

This is just 2L./, from (26.3). So (26.1) becomes

I= fLJd‘x,

which involves only the g,, and their first derivatives. It is homogeneous of
the second degree in these first derivatives.

Put ¥ = L,/. We take it (with a suitable numerical coefficient to be
determined later) as the action density for the gravitational field. It is not a
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scalar density. But it is more convenient than R/, which is a’scalar density,
because it does not involve second derivatives of the G+

According to ordinary ideas of dynamics, the action is the time integral
of the Lagrangian. We have

I= J.?d“x - fdxo f.sg’ dx' dx? dx?
so the Lagrangian is evidently
f.S!’ dx" dx?dx>.

Thus ¥ may be considered as the Lagrangian density (in three dimensions) as
well as the action density (in four dimensions). We may look upon the g, as
dynamical coordinates and their time derivatives as the velocities. We then
see that the Lagrangian is quadratic (nonhomogeneous) in the velocities,
as it usually is in ordinary dynamics.
We must now vary .&. We have, using (20.6),
A, Thg™) = Tay 8T8 ™) + Thygr ) 3T, .
=T}, 89"/ ,) + Tl 6(I5,9")) — T4, T2, 8(g™))
=T}, 04" ) = T g™ )., — T8 T2, 8(g"/) (26.5)
with the help of (22.5). Again
AT T3g" /) = 2ASTEIT 59" + T8, T3, 5(g"))
20(Ch 9" )Ty = Thal3y 8g™))
=8(g” .\ )\Top — ThT38(9™ ) (26.6)
with the help of (22.3). Subtracting (26.6) from (26.5), we get
8L = I3, 86" \/).a = Thy (g™ ), + (T4, %5 = T4 T2) 6(g™). (26.7)
The first two terms here differ by a perfect differential from

=5, 8g" ) + T4, 8(g™*\).

So we get
SI=6 f Pdtx = f R,, 8(g" /) d*x, (26.8)
with R, given by (14.4). With the dg,,, arbitrary, the quantities 6(g**,/) are

also independent and arbitrary, so the condition that (26.8) vanishes leads
to Einstein’s law in the form (24.1).
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We can deduce, by the same method as (7.9), that

39" = —g"g" 5g,,. (26.9)
Also, corresponding to (20.5), we can deduce
6 = 1/ 89.4. (26.10)

Thus
3(g"V) = —(g"9" — 39"'g*")/ 8g.4.

So we may write (26.8), alternatively,

ol = —wa(g‘“‘g”" = 16"°9") 8g.p d*x

- J' (R — 1gR)/ g,y d*x. @6.11)

The requirement that (26.11) vanishes gives Einstein’s law in the form
(24.2).

1. The action for a continuous distribution of matter

We shall consider a continuous distribution of matter whose velocity varies
continuously from one point to a neighboring one, as we did in Section
25. We shall set up an action principle for this matter in interaction with the
gravitational field in the form

(I, +1,) =0, (27.1)

where I,, the gravitational part of the action, is the I of the preceding section
with some numerical coefficient «, and I,,, the matter part of the action, will
now be determined. The condition (27.1) must lead to Einstein’s equations
(25.7) for the gravitational field in the presence of the matter and the geodesic
equations of motion for the matter.

We shall need to make arbitrary variations in the position of an element of
matter to see how it affects I,,. It makes the discussion clearer if we first
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consider the variations purely kinematically, without any reference to the
metric g,,. There is ikcn a real distinction between covariant and contra-
variant vectors and we cannot transform one into the other. A velocity is
described by the ratios of the components of a contravariant vector u*, and
it cannot be normalized without bringing in the metric.

With a continuous flow of matter we have a velocity vector u* (with an
unknown multiplying factor) at each point. We can set up a contravariant
vector density p*, lying in the direction of u*, which determines both the
quantity of the flow and its velocity according to the formulas:

p®dx! dx? dx?
is the amount of matter within the element of volume dx! dx2dx?® at a
certain time and

p'dx°® dx?dx?

is the amount flowing through the surface element dx? dx3 during a time
interval dx°. We shall assume the matter is conserved, so

pr,=0. (27.2)

Let us suppose each element of matter is displaced from z* to z* + b*
with b* small. We must determinc the resulting change in p* at a given point x.
Take first the case of b° = 0. The change in the amount of matter within a

certain three-dimensional volume V is minus the amount displaced through
the boundary of V:

5 fpo dx! dx? dx? = —J.pob’ ds,,
|4

(r=1, 2, 3), where dS, denotes an element of the boundary surface of V.
We can transform the right-hand side to a volume integral by Gauss’s
theorem and we find

0 = —(p°V),. (27.3)
We must generalize this result to the case b° # 0. We make use of the
condition that if b* is proportional to p*, each element of matter is displaced

along its world line and there is then no change in p*. The generalization of
(27.3) is evidertly

op° = (p'b° — p%"),
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because this agrees with (27.3) when b° = 0 and gives 6p° = 0 when b* is
proportional to p*. There is a corresponding formula for the other com-
ponents of p*, so the general result is

ot = (P — p'bY),. (27.4)

For describing a continuous flow of matter the quantities p" are the basic
variables to be used in the action function. They must be varied in accordance
with the formula (27.4), and then, after suitable partial integrations, we must
put the coefficient of each b* equal to zero. This will give us the equations of
motion for the matter.

The action for an isolated particle of mass m is

-m fd& (27.5)

We see the need for the coefficient — m by taking the case of special relativity,
for which the Lagrangian would be the time derivative of (27.5), namely

L ds —m(1 dx" dx"\'?
=TT Tdx%dx)

summed for r = 1, 2, 3. This gives for the momentum

oL dx ) dx" dx"\~1/?
Adxjdx0) ~ ™ dxo dx° dxO
_ dax"
=m ds’

as it ought to be.
We obtain the action for a continuous distribution of matter from (27.5)
by replacing m by p® dx' dx? dx? and integrating; thus
I, = — Jp“ dx* dx? dx3 ds. (27.6)

To get this in a more understandable form we use the metric and put

=ty @17
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where p is a scalar that determines the density and v* is the previous vector
u* normalized to be of length 1. We get

I, =—- ~[p\/v0 dx'dx?dx®ds

I

I

- pr d*x, (27.8)

since v° ds = dx°.

This form for the action is not suitable for applying variations, because
p, v* are not independent variables. We must eliminate them in terms of the
p”, which are then to be varied in accordance with (27.4). We get from (27.7)

)" = oy
So (27.8) becomes

I=-— J (1"p,)"? d*x. @79)
To vary this expression we use
Ap)"? = 0*p) " (p*p" 09, + 20, p")
= 3ov'v"\/ 8g,, + v, Op~.

The action principle (27.1) now gives, with the help of (26.11), which we
multiply by the coefficient x,

oy +1,)=— f[K(R"V — 39"R) + pv"v*]y/ 8g,, d*x — Jv” Sp*d*x.

(27.10)
Equating to zero the coefficient of dg,,,, we get Einstein’s equation (25.7),

provided we take x = (167)™!. The last term gives, with (27.4)
- fu,,(pvb“ — p'b"), d*x
= fvu.v(!’vh“ — p*b")d*x
= J‘(v‘” — v, )p"b" d*x
= jl(vw — v, )pvb/ d*x

= fuu:vpvvb“J d*x (27.11)
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from (25.2). Equating to zero the coefficient of b* here, we get the geodesic
equation (25.5).

18.  The action for the electromagnetic field

The usual expression for the action density of the electromagnetic field is
(8m)"Y(E? — H?).
If we write it in the four-dimensional notation of special relativity given in
Section 23, it becomes
—(16m)1F, F*.

This leads to the expression
I, = —(16m)~! JF,"F“\/ d*x (28.1)

for the invariant action in general relativity. Here we must take into account
that F,, = k,, — K, ,, 50 I, is a function of the g,, and the derivatives
of the electromagnetic potentials.

Let us first vary the g,,,, keeping the x, constant, so the F,, are constant
but not the F**. We have

&F, F*)) = F,,F** 5,/ + F,F,./ 84" g")
= 3F, F*g7\] 89,5 — 2F,, F.5/9"9°°g"" g,
with the help of (26.10) and (26.9). Thus

O(F W F**\f) = GF, F*"g?" — 2F*,F*')/ 89,
= 8nE*’/ 89,,, (28.2)
where E” is the stress-energy tensor of the electromagnetic field, a sym-

metrical tensor defined by

4nEP" = —F°,F* + 4g°°F, F*. (28.3)
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Note that in special relativity

4nE®® = E? — YE? — H?)

= }(E* + HY),
so E® is the energy density, and
4nEOl = _FOZFIZ — F03F13
= E’H® - E°H?,

so E°" is the Poynting vector giving the rate of flow of energy.
If we vary the x,, keeping the g, fixed, we get
8(F , F*\J) = 2F*/ 6F ,, = 4F*"/ bk, ,
= 4F*/ o), — 4F*)), oK,
=4(F*~/ ox,),, — 4F™.,/ oK, (28.4)
with the help of (21.3).
Adding (28.2) and (28.4) and dividing by — 167, we get for the total vari-
ation

oL, = f[—%E““ 39, + (4n)" @ 6K, 1 d*x. (28.5)

19.  The action for charged matter

In the preceding section we considered the electromagnetic field in the
absence of charges. If there are charges present, a further term is needed in
the action. For a single particle of charge e, the extra action is

—e fxu dx* = —e fK“ v* ds, (29.1)

integrated along the world line.

There are difficulties in dealing with a point particle carrying a charge
because it produces a singularity in the electric field. We can evade these
difficulties by dealing instead with a continuous distribution of matter
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carrying charge. We shall handle this matter with the technique of Section 27,
assuming each element of the matter carries charge.

In the kinematical discussion we had a contravariant vector density p* to
determine the density and flow of the matter. We must now introduce a
contravariant vector density #* to determine the density and flow of elec-
tricity. The two vectors are constrained to lie in the same direction. When we
make a displacement, we have

oft = (JD" — J'b), (292
corresponding to (27.4), with the same b*.

The expression (29.1) for the action for a charged particle now leads to

q

I = —j/okuu“ dx' dx? dx® ds

for a continuous distribution of charged matter, corresponding to (27.6).
When we introduce the metric we put, corresponding to (27.7),

I =a"/, (29.3)

where ¢ is a scalar that determines the charge density. The action now
becomes, corresponding to (27.8),

I, =— fox“v“\/ d*x

- fx“ Frdix. (29.4)

Thus

ol, —f[]“ Ok, + K Fb" — #1b) Jd*x

f [=ovh 8, + 1, (F"b* — F£%")] d*x
- fﬂ(—u“ S, + F o 0'bH)/ d*x. (29.5)

The equations for the interaction of the charged matter with the combined
gravitational and electromagnetic fields all follow from the general action
principle

Sy + Ly + Loy + 1) = 0. (29.6)
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Thus we take the sum of the expressions (29.5), (28.5), and (27.10) with the
last term replaced by (27.11), and equate the total coefficients of the variations
84,,, 0x,,, and b* to zero.

The coefficient of \/ g,,,, multiplied by — 167, gives

R* — 1R + 8mpv*v’ + 8mE* = 0. (29.7
2 P

This is the Einstein equation (24.6) with Y** consisting of two parts, one
coming from the material-energy tensor and the other from the stress-energy
tensor of the electromagnetic field.

The coefficient of \/ 5k, gives

—ov* + (4m) P, = 0.
From (29.3) we see that ov* is the charge current vector J*, so we get
F®., = 4nJ*. (29.8)

This is the Maxwell equation (23.13) for the presence of charges.
Finally, the coefficient of /b* gives

pv,.v° + oF, 0" =0,
or
pv,.,v° + F,J" =0 (29.9)

The second term here gives the Lorentz force which causes the trajectory of
an element of the matter to depart from a geodesic.’

The equation (29.9) can be deduced from (29.7) and (29.8). Taking the
covariant divergence of (29.7) and using the Bianci relations, we get

(pv*" + E™), = 0. (29.10)
Now from (28.3)
4nE",, = —F*F*,, — F* F’, + 4g"F*F .,
= —F"Fy, — 3¢"F""(F oy = F vy = Fugp)
= dnF*J,,
from (23.12) and (29.8). So (29.10) becomes
v"(pv"),, + pv*v*, + F**J, = 0. (29.11)
Multiply by v, and use (25.2). We get
(pv"),, = =F",J, =0
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if we use the condition J, = ov,, expressing that J, and v, are constrained
to lie in the same direction. Thus the first term of (29.11) vanishes and we are
left with (29.9).

This deduction means that the equations that follow from the action
principle (29.6) are not all independent. There is a general reason for this,
which will be explained in Section 30.

30.  The comprehensive action principle

The method of Section 29 can be generalized to apply to the gravitational
field interacting with any other ficlds, which are also interacting with one
another. There is a comprehensive action principle,

o, +1)=0, (30.1)

where I is the gravitational action that we had before and I is the action of all
the other fields and consists of a sum of terms, one for each field. It is a great
advantage of using an action principle that it is so easy to obtain the correct
equations for any fields in interaction. One merely has to obtain the action
for each of the fields one is interested in and add them all together and include
them all in (30.1).

We have

I, = JY d*x,
where this & is (16m) ! times the % of Section 26. We get

o FY
L= (& o= a
o, j (09,,; % + .50 6g‘”‘"> *

(A7 0L
= ||z—-(— 8g,p d*x.
J’l:a-quﬂ (aguﬂ.v )v:l 9

The work of Section 26, leading to (26.11), shows that

e (o o
- =- R — 1g*R)/. 30.2
%00 (3y,ﬂ,v>,v (16m)~( 39°R). (30.2)
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Let ¢, (n=1,2,3,...) denote the other ficld quantities. Each of them is
assumed to be a component of a tensor, but its precise tensor character is left
unspecified. I’ is of the form of the integral of a scalar density

I = J..‘Z” d*x,

where &’ is a function of the ¢, and their first derivatives ¢, , and possibly
also higher derivatives.
The variation of the action now leads to a result of the form

o, + 1) = J(p“" 89,y + T 1" 09, ) d*x, (30.3)

with p** = p™, because any term involving d (derivative of a field quantity)
can be transformed by partial integration to a term that can be included in
(30.3). The variation principle (30.1) thus leads to the field equations
=0, (30.4)
1 =0. (30.5)
p**y/ will consistof the term (30.2) coming from 1, plus terms comingfrom

Z’,\/ say N*"'We have of course N** = N*. &' usually does not contain
derivatives of the g, and then

o
v/ —
Newy/ G (30.6)

The equation (30.4) now becomes
R™ — 4g"R — 16aN* = 0.
It is just the Einstcin equation (24.6) with
Y® = —2N™. (30.7)

We see here how each field contributes a term to the right-hand side of the
Einstein equation, depending, according to (30.6), on the way the action for
that field involves g,,,.

Itis necessary for consistency that the N** have the property N**,, = 0. This
property can be deduced quite generally from the condition that I is invariant
under a change of coordinates that leaves the bounding surface unchanged.
We make a small change of coordinates, say x* = x* + b*, with the b* small
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and functions of the x’s, and work to the first order in the b*. The transfor-
mation law for the g, is according to (3.7), with dashed suffixes to specify the
new tensor,

GulX) = x5, X000, (x). (30.8)
Let dg,, denote the first-order change in g,,, not at a specified field point, but
for definite values of the coordinates to which it refers, so that

Garp(X) = Gap(X') + 09,5
= Gop(X) + Gup,o b7 + 0g4p.

We have

x5 = (x*+ b, = gy + b7,
Thus (30.8) gives

9ul¥) = (g + b3)(90 + bP)[Gapx) + gupob° + 89,]
= G,0(X) + Guvob” + 00, + G bl + ga b3,
S0
09y = —9uab% = 9u.bly — 90 b".

We now determine the variation in I’ when the g,, are changed in this
way and the other field variables keep the same value at the point with
coordinates x* that they previously had for x*. It is, if we use (30.6),

oI = f N 3g,,/ d*x
- jN"“(—yM B, = gubt, — g, bW dx
= -Il[z(Nuv‘J)yv - gl‘V‘lN“vJ]ba d4x

=2 fN,V:vb“\/ d*x

from the theorem expressed by (21.4), which is valid for any symmetrical
two-index tensor. The invariance property of I’ rcquires that it shall be
unaltered under this variation, for all b* Hence N,”,, = 0.

On account of this relation, the field equations (30.4), (30.5) are not all
independent.
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31 The pseudo-energy tensor of the gravitational
field

Define the quantity t,* by

£
LN =gy, — 9, & (L1
We then have

. X% 0z
(tu \/).v = ( ) Gap.u + _gup,;u - 3’,,.'

Kg,, v agaﬂ.v
Now
0¥ 0L
= %gmﬂ.u + grhgua.w
so

24 0¥
t” = - —
(” \/),v [(agaﬂ.\'),v aguﬂ:'ga"“

= (16m)"Y(R* — 1g**R)g, 5.,/
from (30.2). With the help of the field equations (24.6) we now get

(tuv\/).v = ‘%Yﬁﬂgaﬂ.u\/'
so from (21.4) and Y,",, = 0, we get

[ + /1, =0. (31.2)

We have here a conservation law, and it is natural to consider the con-

served density (¢,” + Y,")\/ as the density of energy and momentum. We have

already had Y,” as the energy and momentum of the fields other than the

gravitational field, so t,” represents the energy and momentum of the gravita-

tional field. But it is not a tensor. The equation (31.1) that defines it may be
written

v aL v
b gy e~ Ol oL
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but L is not a scalar, because we had to transform the scalar R, which was
originally used to get the gravitational action, in order to remove the second
derivatives from it. Thus ¢,” cannot be a tensor. It is called a pseudo-tensor.

It is not possible to obtain an expression for the encrgy of the gravitational
field satisfying both the conditions: (i) when added to other forms of energy
the total energy is conserved, and (ii) the energy within a definite (three-
dimensional) region at a certain time is independent of the coordinate
system. Thus, in general, gravitational energy cannot be localized. The best
we can do is to use the pseudo-tensor, which satisfies condition (i) but not
(ii). It gives us approximate information about gravitational energy, which
in some special cases can be accurate.

We may form the integral

j (1,0 + 1.9 dx! dx? dx® (314)

over a large three-dimensional volume enclosing some physical system at a
certain time. As the volume tends to infinity, we may suppose the integral
to give the total energy and momentum, provided: (a) it converges and (b) the
flux through the surface of the large volume tends to zero. The equation
(31.2) then shows that the integral (31.4) taken at one time x° = a equals its
value at another time x° = b. Furthermore, the integral must be independent
of the coordinate system, since we could change the coordinates at x® = b
without changing them at x° = a. We thus have definite expressions for
the total energy and momentum, which are conserved.

The conditions (a) and (b), which are needed for conservation of total
energy and momentum, do not often apply in practical cases. They would
apply if space were static outside a definite tubular region in four dimensions.
This could be so if we had some masses which start to move at a certain
time, so that the motion creates a disturbance which travels outward with
the velocity of light. For the usual planetary system the motion will have
been going on since the infinite past and the conditions do not apply. A
special trcatment is needed to discuss the energy of the gravitational waves,
and this will be given in Section 33.
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31 Explicit expression for the pseudo-tensor

The formula (31.1) for defining t,” is of the form

v d v
I o2
where the g, (n = 1,2,..., 10) are the ten g, and a summation over all n is

implied. We could equally well write it

v 0L
L' = WQW‘ - 9,9, (32.2)

where the Q,, are any ten independent functions of the q,. To prove this, note
that

30,
Qm.v = a—q:qn,a'
Hence
o0& _ % 8Q,, 0% 80,
4ny  0Qp, 34,, 30, 0,
_ 0% 0Q,,
80, 9q,
Thus
0 0% 29, k%

mq"_,‘ = 30, 4, G = 0., [

The equality of (32.1) and (32.2) follows.

To deduce an explicit expression for ¢,” it is convenient to work with
(32.2) and to take the Q,, to be the quantities g*'y/. We can now use formula
(26.7), which gives (bringing in the coefficient 167),

1662 = (T — g3T2,) 8(9%)),, + (some coeft) 5(g™/),

and hence

16mt,"y/ = (o — ;T2 @™ ), — 9,2 (323)
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B, Gravitational waves

Let us consider a region of empty space where the gravitational field is
weak and the g,,, are approximately constant. We then have vquation (16.4) or

9" Gvps = Gupwo = Juap + Goau) = 0- (33.1)

Let us take harmonic coordinates. The condition (22.2) gives, with the suffix 1
lowered,

9" Gouv = 39u.0) = 0. (332)

Differentiate this equation with respect to x° and neglect second-order
terms. The result is

9" Gupvo = 9uv.00) = 0- (33.3)
Interchange p and o:
9" oo — Yuvps) = 0- (33.4)
Add (33.1), (33.3), and (33.4). We get
9" 9pouv = 0-

Thus each g, satisfies the d’Alembert equation and its solution will consist
of waves traveling with the velocity of light. They are gravitational waves.

Let us consider the energy of these waves. Owing to the pseudo-tensor
not being a real tensor, we do not get, in general, a clear result independent
of the coordinate system. But there is one special case in which we do get a
clear result; namely, when the waves are all moving in the same direction.

If the waves are all moving in the direction x*, we can choose our co-
ordinate system so that the g,,, are functions of only the one variable x® — x3.
Let us take the more general case in which the g,, are all functions of the
single variable I, x?, the I, being constants satisfying g°*l,1, = 0, with neglect
of the variable part of the g*°. We then have

Guvio = Upy I, (33.5)

where u,, is the derivative of the function g,, of I, x". Of course, u,, = u,,,.
The harmonic condition (33.2) gives

= Lamv =1
g"'um,lv =29 u‘NI,, = zulp,
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with u = uf. We may write this as
upl, = 4ul, (33.6)
or as
" — ig™ul, = 0. (33.7)
We have from (33.5)
e, = Yuol, + ugl, — u,,l°).
The expression (26.3) for L reduces, with harmonic coordinates, to

L= —g"T%,T;,

Ho s vp

—%g’”(u": I, + ugl“ - uwl")(u",’lp + uy I, - u,, ).

This gives nine terms when multiplied up, but we can easily see that every one
of them vanishes, on account of (33.6) and I,/ = 0. Thus the action density
vanishes. There is a corresponding result for the electromagnetic field, for
which the action density also vanishes in the case of waves moving only in
one direction.

We must now evaluate the pseudo-tensor (32.3). We have

900 = —0%9"Gpe = — Wb
Vo= 18200 = Wk (338)
SO
@) = — @ = 3gu)/l,.
Hence
L0 = =0 + 3970l
=0,
from (33.8) and (33.7). We are left with
16mt,” = —u® — 4g*u)l,

= _%(“‘:lﬁ + up L - "aplv)(“lﬂ - %gaﬂ")l,.
= Yu,u? — WA, 0 (33.9)

We have a result for ¢,” that looks like a tensor. This means that t,” trans-
forms like a tensor under those transformations that preserve the character
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of the field of consisting only of waves moving in the direction l,, so that the
9,» remain functions of the single variable [, x°. Such transformations must
consist only in the introduction of coordinate waves moving in the direction
1o, of the form

x* = x* 4 bH,
where b, is a function only of I,x°. With the restriction that we have waves
moving only in one direction, gravitational energy can be localized.

34.  The polarization of gravitational waves

To understand the physical significance of (33.9), let us go back to the case of
waves moving in the direction x3,so that Iy = 1,1, = I, = 0,1; = —1, and
use coordinates approximating to those of special relativity. The harmonic
conditions (33.6) now give

Ujo + 3 =0,

Uzo + uy3 =0,

Uso + U3y = —du
Thus

Ugo = Uzy = U = Ugg — Uyy — Uy — Uy3,

)

Upy + gz = 0. (34.1)
Also

2uoy = —(ugg + uz3).

We now get

“aﬁ“aﬂ =4 = upe? + uy,? +ouy,? + 33?2 — 2ug, 2 — 214,
2 2 2 2 1 2
= 2ugs® + 2up5? + 2up3% + 2uy,? — Yugy — Us3)
= 2 2 2
=y oyt + 2uy,

= Huyy = uz2)* + 2uy,?,
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from (34.1). Thus
16mto° = 4uyy — u22)* + ui,? (342

and

We see that the energy density is positive definite and the energy flows in
the direction x* with the velocity of light.

To discuss the polarization of the waves, we introduce the inﬁm’te§imal
rotation operator R in the plane x'x?. Applied to any vector 4,, 4,, it has
the effect

RA, = 4,, RA;= —A4,

Thus
RZAX = -4,

50 iR has the eigenvalues + 1 when applied to a vector.
Applied to u,y, it has the effect

Ruyy = uyy + uyy = 2y,

Ruyy =uyp — uyy,

Ruyy = —uyy — Uy = —2uy,.
So

Rluyy, +uyy) =0
and

R(uyy — uyp) = 4uy,

R¥Muyy = yg) = — 4(uyy — Usz):

Thus uy, + uy, is invariant, while iR has the eigenvalues +2 when applied
to Uy, — Uy, Or uy,. The components of u,, that contribute to the energy
(34.2) thus correspond to spin 2.
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3. The cosmological term

Einstein has considered generalizing his field equations for empty space to

R,, = 1g,,, (35.1)

where 1 is a constant. This is a tensor equation, 5o it is permissible as a law of
nature.

We get good agreement with observation for the solar system without this
term, and therefore if we do introduce it we must take 1 to be small enough
not to disturb the agreement. Since R, contains second derivatives of the
g,» 4 must have the dimensions (distance) ™ 2. For A to be small this distance
must be very large. It is a cosmological distance, of the order of the radius of
the universe.

The extra term is important for cosmological theories, but has a negligible
effect on the physics of nearby objects. To take it into account in the field
theory, we merely have to add an extra term to the Lagrangian; namely,

I.=c fJ d*x,

with ¢ a suitable constant.
We have from (26.10)

b= [ s .

Thus the action principle

&I, +1)=0
gives
~(167)R™ — 1g"R) + Leg™ = 0, (35.2)
The equation (35.1) gives
R =42,

and hence

R, — %guvR = _A.quv'
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This agrees with (35.2), provided we take
8nc =—A

For the gravitational field interacting with any other fields, we merely
have to include the term I, in the action and we will get the correct field
equations with Einstein’s cosmological term.
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