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The number pi, the ratio of the circumference of & circle to its diameter, has fascinated
mathematicians through the centuries and continues to intrigue researchers even today. Gi-
ants like Archimedes, Newton, Euler and Gauss have through their seminal work contributed
substantially to our current understanding of properties of pi and shown how this has a di-
rect bearing on many fundamental questions. And to the impressive list of luminaries who
have studied this number, Ramanujan’s pame must be added. As is usually the case when
Ramanujan confronts a topic, he provides a touch of magic to it by means of his incredi-
bly beautiful formulae. In a famous paper published in 1914 in The Quarterly Journal of
Mathematics (Oxford) entitled “Modular equations and approximations to 7", Ramanujan
has several tantalising formulae involving pi and other numbers and such expressions are
the basis for recent computations of the digits of pi to over two billion decimal places! This
paper contains work done by Ramanujan in India prior to his departure to England. It
is amazing that Ramanujan, who in rural India wrote many of these formulae on a piece
of slate and erased them with his elbow, should remain alive in the modern world of the
computer! In this article I will discuss in lay terms some of the important properties of pi
and how we understand these in relation to many fundamental problems. In doing so, T will
describe some of Ramanujan’s observations on pi and how they influence current research.
In prepsring this article, I profited greatly from the book entitled “Pi and the AGM” by
Jonathan Borwein and Peter Borwein as well as from comments by Bruce Berndt.

Early history: The realisation that the ratio of the circumference of a circle to its
diameter is the same for all circles, is an important landmark in human history. This
invariant number is denoted by the Greek letter z (pi). One finds in the Egyptian Rhind
Papyrus, which dates about 2000 BC, the approximate value (16/9)? = 3.1604... for =.
With regard to the creation of the earth, implicit in The Bible is the statement that = is
nearly equal to 3. In attempting to compute the circumference of the earth, the ancients
were motivated to calculate m to a high degree of accuracy. Eratosthenes of Alexandria,
who is remembered mainly for the Sieve, & procedure to generate prime numbers, actually
computed the circumference of the earth. But the one figure from that era who towers above
every one is Archimedes of Syracuse (287-212 BC). Indeed, Archimedes is considered to be
one of the five greatest scientific thinkers of all time along with Newton, Euler, Gauss and
Finstein. Archimedes was a master of approximation and of the limit process and in the
course of computing the areas and volumes of various geometrical figures, he even anticipated
Newton and Liebniz in the development of integral caleulus. By computing the lengths of
the inseribed and circumscribed polygon of 96 sides for a circle of unit radius, Archimedes
showed that 7 was less than 3} and greater than 313, We realise today, that these early
calculations of Archimedes are indeed the first few steps in the harmonic-geometric mean
iteration which can be programmed in the computer to give remarkably good approximations
to .

Squaring the Circle: The members of the Pythagorean school believed that all phe-
nomena could be expressed in terms of integers (whole numbers) and rationals (ratios of
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integers). For those steeped in this philosophy, it must have come as shock when the square
root of 2 was shown to be irrational (not rational). The number 7 also resisted all attempts
to produce an exact rational value, increasing the suspicion that it too might be an irrational
number. But the irrationality of = was proved only in 1761.

Struggling to understand = geometrically, the Greeks posed the problem of squaring the
circle. More precisely, the problem was to construct using only the ruler and compass, a
square which is equal in area to a given circle. Since the area of a circle of unit radius is
7, what was required was the construction of the side of the corresponding square which
will be the square root of # units in length. This is one of the three problems of antiquity.
The second problem is to trisect any given angle using only the ruler and compass. (It is
easy to bisect any given angle and indeed this construction is taught in the early years of
high school.} The third problem is to double the cube, that is construct a cube, again with
only ruler and compass, which is twice the volume of a given cube. This is equivalent to
asking for the construction of the cube root of 2 using ruler and compass. The geometrical
construction of the square root of 2 is easy, because this is the hypoteneuse of a right angled
isosceles triangle whose equal sides are of unit length, a fact known to any high school student
of Euclidean Geometry. All three problems of antiquity are now known to be impossible
because of the pioneering work of Galois in the 19-th century, whose study of the solutions
of algebraic equations laid the foundations of Group Theory. From the work of Galois it
followed that the only numbers which could be constructed using ruler and compass are
special types of algebraic numbers. (Algebraic numbers are those which arise as solutions
of polynomial equations with integer coefficients.) Both the square root and the cube root
of 2 are algebraic numbers but the cube root of 2 is not of the special type. In the case of
the problem of squaring the circle, its impossibility is a consequence of the fact that 7 is
not an algebraic number. This was proved by Lindemann in 1882 and is considered to be
one of the crowning achievements of 18-th century.

Ramanujan was very much interested in the problem of squaring the circle. In a note
published in the Journal of the Indian Mathematical Society (1913), he offered a geometrical
construction to obtain an approximation for the square root of 7 based on the observation
that = is nearly 355/113. Ramanujan discusses this approximation again in his farnous paper
of 1914. The most commonly used rational approximation to » is 22/7 and we understand
this now in terms of the continued fraction for 7. The number 3 is the first approximation
that emerges from the continued fraction, with 22/7 as the second (and better) approxi-
mation. The number 355/113 considered by Ramanujan is the third approximation. Each
successive approximation from the continued fraction s better than the preceding one. Even
before the 15-th century, the Chinese and Indian mathematicians were aware that 355/113
was an extremely pood approximation to .

Representations for pi: The invention of Calculus paved the way for our present un-
derstanding of 7 and other numbers. Between 1665 and 1666 Newton himself calculated 7 to
about 15 decimal places by means of an infinite series for the arc-sine function. His contem-
porary and rival in mainland Europe, Liebniz, produced in 1674 a more elegant expression
for = using the inverse of the tangent function, a fact that was observed independently by
the Scottish mathematician James Gregory in 1671. Indeed the Gregory series formed the
basis for the calculation of 7 to 71 decimal places by the British astronomer Edmund Halley
and his student Abraham Sharp. Other infinite expressions for # were provided during this
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period. One of the most beautiful and well known expressions is an infinite product due
to John Wallis involving the even numbers in the mumerator and the odd numbers in the
denominator. In fact Wallis challenged Lord Brouncker by saying “I bet you can’t top this!”
Lord Brouncker, who was the first president of The Royal Society, was not a mathematician.
Nevertheless, he accepted a challenge and produced a lovely continued fraction gxpansion
for 7. Since Lord Brouncker did not give a proof of his derivation it remained a mystery as
to how he arrived at his result. Bruce Berndt points out that that Ramanujan has several
fascinating continued fractions in his notebooks. One of these continued fraction formulas of
Ramannjan for a ratio of gamma functions yields Lord Brouncker’s fraction as a special case
by setting the variable z = 1. Interestingly, Ramanujan had communicated this continued
fraction along with many other results in his first letter to Hardy in 1913.

Although these infinite expressions for v due to Wallis and his contemporaries were im-
portant in understanding many fundamental problems, no one af that time wasg able to use
these formulae to prove that = is itrational. Leonard Euler (1707-83), the most prolific math-
ematician in history, was the supreme master in the manipulation of infinite expressions.
He produced what is perhaps considered to be the most beautiful and important formula in
all of mathematics connecting e, the natural base of the logarithms, 4, the imaginary square
root of minus 1, and 7. Buler’s formula is that e to the power im equals minus 1. It is said
of Buler that he could calculate with as much ease as a fish takes to water or an eagle takes
to the wing! (I think the same could be said of Ramanujan). Using his superior powers of
caleulation, Euler evaluated several infinite series and products in terms of .

The first proof of the irrationality of = was supplied by Lambert in 1761. Legendre
subsequently improved on this and showed that the square of 7 is irrational, and expressed
the opinion that = may not even be an algebraic number, a belief that was shared by Euler.
Transcendental numbers, that is numbers which are not slgebraic, were not even known to
exist at that time. The first transcendental numbers were constructed by Liouville only in
1840. Then in 1873, Charles Hermite showed that e, the natural base of the logarithms,
is transcendental. Finally, in 1882, Lindemann, extending the ideas of Hermite, and using
Euler’s formula, established that « is a transcendental number and thus settled the 2300
year old problem of squaring the circle.

Elliptic and theta functions: There are many who feel that the greatest mathematical
discovery of the 19-th century is that of the elliptic and theta functions due primarily to
Abel, Jacobi and Weierstrass, each working independently of the others.

Most of us are familiar with the trigonometric functions, sine, cosine, tangent etc. We
know that the values of these trigonometric functions repeat, that is they are periodic
functions with period 2r. In the study of calculus, it was observed that the values of
certain integrals invoving special quadratic polynomials lead to inverses of the trigonometric
functions. But even mild variations of these polynomials lead to integrals which are very
difficult to evaluate. Such integrals arise for example in the study of the circumference of an
ellipse, whose computation is obviously of interest because the planets move around the sun
in elliptical orbits. The major realisation was that the inverses of certain of these integrals
lead to functions which have two periods, one a real number and another a complex number.
These are the elliptic functions. The connection between elliptic and theta functions is that
special combinations of theta functions in the form of ratios yield elliptic functions.

Elliptic and theta functions have become very important because of their wide appli-
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cability ranging from Statistical Mechanics to Number Theory. The modern notion of an
Elliptic Curve in Algebraic Geometry is a far reaching extension of the basic idea of an
elliptic function and one that has proved to be extremely important. It is the Theory of
Elliptic Curves blended with Number Theory that led to Andrew Wiles’ recent proof of
Fermat’s Last Theorem. Elliptic curves are used today in the fastest algorithms to factor
large numbers and to test whether a given large number is & prime number. And elliptic
functions and the relations they satisfy, especially some observed by Ramanujan, are the
crucial tools employed in the present day calculations of the digits of .

The AGM: The arithmetic mean (average) of two positive numbers is one half of their
sum while their geometric mean is the square root of their product. It is easy to see that the
arithmetic and geometric means lie between the two numbers. It is interesting to note that
the geometric mean is always less than the arithmetic mean. Exploiting this simple idea,
Glauss produced the remarkable arithmetic-geometric mean iteration. More precisely, Gauss
starts with two positive numbers @ and b with b less than a. Let ¢ and d be their arithmetic
and geometric means respectively. Then ¢ and d lie between ¢ and & with d being smaller
than ¢, Gauss then calculates the arithmetic and geometric means of c and d to get numbers
which are even closer and repeats this procedure indefinitely. An infinite sequence of pairs
is thus generated whose difference keeps shrinking and so these numbers have a limit. This
limit is the arithmetic-geometric mean (AGM) of a and b and is denoted by M(e,b). For
any number a larger than 1, Gauss evaluated the AGM of a and 1 to be an elliptic integral
involving m and the trigonometric function sine, and thus established a connection with the
theory of elliptic functions. He then expressed the opinion that this connection would open
up a whole new field of analysis.

In the past decade, the AGM and other means obtained by iterative processes have been
studied extensively because of their close connection with the elliptic and theta functions and
also because these iteration procedures give rapid methods to calculate = and other related
numbers. Jonathan Borwein and Peter Borwein have studied such convergence questions
for a large class of numbers and especially for 7 and it was their work which led D.H.Bailey
to compute several million digits of #. More recently, Kanada in Japan has employed the
iteration techniques of the Borwein’s and computed 1.6 billion decimal digits of =.

Ramanujan; Hardy expressed the opinion that Ramanujan did not have & grasp of
complex variable theory and that this was the cause for some of the slips that Ramanujan
made in the theory of prime numbers. What is most baffling is that Ramanujan had a com-
plete mastery over elliptic and theta functions, a subject in which significant contributions
cannot really be made without a firm grasp of complex variable theory. Ramanujan's theory
of elliptic functions was work that he did in India prior to his departure to England. Hardy
was of the belief that Ramanujan did not invent elliptic functions by himself, that he must
have had access in India to Greenhill’s book or other books on these topics from which he
must have learnt some of the basic ideas. In any case, Ramanujan’s work on elliptic and
theta funections was work that he did before he was exposed to sophisticated techniques by
Hardy. Of Ramanujan’s remarkable ability to evaluate elliptic and other definite integrals,
Hardy has said, that during the course of his lectures if at any time he needed the value
of a certain integral, he would simply turn towards Ramanujan in the audience whe would
provide the answer instantly!

Ramanujan published an important paper in the Oxford Quarterly Journal of Mathe-



matics (1914) entitled “Modular equations and approximations o #”. This paper contains &
myriad of formulae including transformation formulas for elliptic and theta functions called
modular relations. In fact Ramanujan has discovered more modular relations than Abel, Ja-
cobi and other luminaries combined! Ramanujan’s approach to elliptic and theta functions
is so original and his notation so different from that of his illustrious predecessors, that con-
trary to Hardy’s opinion, one is inclined to believe that Ramanujan discovered these results
without prior knowledge of the subject. Ramanujan’s approach to this theory is now gain-
ing acceptance as can be seen from recent lectures by Bruce Berndt entitled “Ramanujan’s
theory of theta functions™.

In addition to modular identities, this paper contains several series representations for
the reciprocal of 7 and for numbers which are of the form = divided by the square root of
an integer. Since these series converge very rapidly, it was realised that they could be used
to calculate 7 and other numbers to a high degree of precision. During the past decade,
William Gosper used one of Ramanujan’s series for the reciprocal of 7 to evaluate 17 million
terms in the continued fraction expansion of =. Within the last two years, the brothers David
and Gregory Chudnovsky utilised certain extensions of some of Ramanujan’s formulae to
compute 7 to about two billion decimal places. The most outstanding thing about their
caleulation was that the Chudnovsky brothers did this by assembling & computer (by mail
order) in their own apartment in New York - & computer built specifically for this purpose!

Why calculate the digits of pi: Many may wonder what is achieved by calculating
millions of digits of 7. Is it simply for the challenge? Of his calculation of 7 to 15 decimal
places, Newton admitted “I am ashamed to tell you to how many figures I carried these
computations, having no other business at this time.” Sir Edmund Hillary’s response when
asked why he chose to climb Mount Everest was “because it is there!”

In the case of the calculation of the digits of =, there is more at stake than just the
challenge. Every attempt to understand = has produced new techniques which have proved
applicable elsewhere, The methods developed for studying m shed light on the properties
of other numbers. That is also what we hope might happen with regard to the study of
normal numbers.

A normal number to the base ten is one in whose decimal expansion, every digit from zero
to nine occurs with equal freguency, and more generally, any given block of, say, k digits,
occurs with frequency ten to the power minus k. The number .1234567891011121314...,
whose decimal digits are simply obtained from writing down all the positive integers, is an
example of a normal number to base ten. We know that almast all numbers are normal, but
it is extremnely difficult to prove that a given number is normal. For instance, we suspect
that 7 and e are normal numbers but these questions are at present unresolved.

Another problem is to obtain what is called an irrationalily measure for w, that is
study the degree of approximation of 7 by rational numbers. In 1958, K.F.Roth of Impe-
rial College, London, was awarded the Fields Medal (the equivalent of the Nobel Prize in
mathematics) for showing that all algebraic irrational numbers have irrationality measure
equal to 2. We know that almost all numbers have irrationality measure 2 including most of
the transcendental numbers, but given a specific transcendental number, it is usually very
difficult to confirm that its irrationality measure equals 2. In the case of #, it is conjectured
that the irrationality measure is 2, but we are far away from this result. A few years ago,
the Chudnovsky brothers showed that the irrationality measure for m was less than 16.53.
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They obtained such superior irrationality measures for T and related numbers by employing
Ramanujan’s formulae in his famous paper of 1914. '

Ramanujan’s ability: Ramanujan’s mastery of infinite processes and his superior
powers of manipulation are only too well known. It is always fascinating to find out what
motivated Ramanujan to write a particular formula down. For instance, in his 1914 paper
he offers the fourth root of the number 975 — < as an approximation to , and provides
a geometrical construction. This approximation may also be found in his second and third
notebooks but no indication is given as to what led him to this result. One possible ex-
planation (due to N.D.Mermin) is that the decimal expansion of the fourth power of 7 1s
97.400091034002.... and Ramanujan probably observed that the digits 09 appear in succes-
sion. So he might have replaced this by the decimal expansion 97.4090009... with the digits
09 repeating indefinitely and thus was led to 973 — ¢ which he wrote in a different form.
But this raises the question as to what led Ramanujan to consider the decimal expansion
of the fourth power of 7 in the first place. Bruce Berndt has explained this as follows:
“Ramanujan’s facility with continued fractions was unequalled in mathematical history. As
suspected by Mermin, Ramanujan might have known that the continued fraction for the
fourth power of 7 starts as 974 and very soon has the large integer 16539 in the sixth step
of the expansion (sixth partial quotient). Hence he might have concluded that the fourth
power of 7 should have a very good rational approximation and this probably led him to
the decimal expansion.”

In summary, trying to understand # is as much of a challenge and pleasure as attempting
to understand the mind of Ramanujan. It is only fitting that, Ramanujan, the most romantic
mathematical figure in history, should have been charmed by = whose undying beauty has
captivated mathematicians from the days of Archimedes to the present!



